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The design of performance-based incentives can be naturally posed as a moral hazard principal-agent prob-

lem. In this setting, a key input to the principal’s optimal contracting problem is the agent’s production

function – the dependence of agent output on effort. While agent production is classically assumed to be

known to the principal, this is unlikely to be the case in practice. Motivated by the design of performance-

based incentives, we present a method for estimating a principal-agent model from data on incentive contracts

and associated outcomes, with a focus on estimating agent production. The proposed estimator is statistically

consistent and can be expressed as a mathematical program. To circumvent computational challenges with

solving the estimation problem exactly, we approximate it as an integer program, which we solve through a

column generation algorithm that uses hypothesis tests to select variables. We show that our approximation

scheme and solution technique both preserve the estimator’s consistency and combine to dramatically reduce

the computational time required to obtain sound estimates. To demonstrate our method, we conducted an

experiment on a crowdwork platform (Amazon Mechanical Turk) by randomly assigning incentive contracts

with varying pay rates among a pool of workers completing the same task. We present numerical results

illustrating how our estimator combined with experimentation can shed light on the efficacy of performance-

based incentives.

1. Introduction

The extent to which financial incentives increase worker performance is of interest in many em-

ployment settings. This question has taken on renewed relevance due to the emergence of online

labor platforms, which are used for on-demand jobs like ride-hailing (e.g., Uber, Lyft), delivery

(Postmates), freelance work (Upwork), and short, discrete tasks (Amazon Mechanical Turk). Al-

though these platforms support different types of work, they also have common features: workers

are hired and compensated on a per-task basis, work is done remotely with limited supervision,

and workers may be offered performance-based incentives.1

1 For example, Lyft offers drivers bonuses for fulfilling a target number of rides within a predefined time frame (Lyft
2021), and Postmates offers a similar incentive (Postmates 2021). Similarly, freelance platforms Upwork and Amazon
Mechanical Turk allow clients to provide workers with bonuses at their own discretion.
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The design of performance-based incentives can be naturally posed as a moral-hazard principal-

agent problem, in which an agent’s (worker’s) effort is hidden from the principal (employer), and the

agent’s output depends stochastically on their effort (Holmstrom 1979, Grossman and Hart 1983,

Sappington 1991). In this setting, the relationship between worker output and effort corresponds to

a set of parameters that define agent production. If these parameters are known, then the principal’s

problem of optimally designing incentives is well-defined and potentially convex (Grossman and

Hart 1983).

In practice, however, the relationship between worker effort and output is unlikely to be known

a priori. Given data on incentives and associated output, this dependence can be inferred by

specifying an appropriate agent model and estimating the parameters that govern agent production.

Despite the importance of principal-agent models to the analysis of incentive contracts, estimation

problems of this nature are scarce in the literature, even for simple agent models. Estimating an

agent model from observational or experimental data can be a useful step toward the design of

incentive contracts in practice, and can also play a role in estimating agent welfare under a given

contract.

Our main contribution is to present an estimator for a principal-agent model with hidden actions,

along with an algorithm for solving the estimation problem. Our focus is on estimating model pa-

rameters that encode agent production, namely, the conditional distribution over output for each

effort level. To reflect a moral-hazard setting, we assume no data is available on agent effort, which

makes the estimation problem computationally non-trivial. We make two methodological contri-

butions in particular: (1) we provide an estimator that is statistically consistent under appropriate

conditions, meaning it uncovers the true model parameters as the sample size goes to infinity, and

(2) we develop an accompanying solution technique that is computationally efficient and preserves

consistency.

The agent model we consider is non-parametric, in that we do not assume functional forms

for the dependence of agent output on effort, and we assume both output and effort levels are

discrete. This specification has two important consequences. First, it admits a simple and tractable

formulation of a general optimal contracting problem, which allows us to readily solve for an optimal

contract under the estimated agent model. Second, estimating agent models is well-known to be

challenging due to a need to embed the agent’s problem – itself an optimization problem – within

the estimator (Bajari et al. 2007). Our modeling approach allows us to express the estimator as

an integer program, which admits a structure that supports obtaining estimates quickly using a

novel solution technique. In addition to these computational advantages, our non-parametric model

naturally handles threshold-based incentives, which commonly arise in practice, and is flexible

enough to have strong predictive performance on a variety of datasets without overfitting.
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In an empirical study, we show how our estimator can be combined with experimentation to

characterize worker output over a class of incentive contracts, which in turn allows us to solve

for an optimal contract from the given class. In a randomized experiment, we recruited a pool of

500 workers from a crowdwork platform (Amazon Mechanical Turk), each of whom was asked to

complete an identical proofreading task, with output measured by the number of typos identified.

We created exogenous variation in payments by randomly generating the parameters of an incentive

contract for each worker. We then applied our estimator to the experimental data to investigate the

effect of performance-based incentives on worker output. Our results complement existing findings

that incentives do increase output in crowdwork, although we observe diminishing returns to output

beginning at relatively low payments.

Our model has limitations. The agent model does not include common features of principal-

agent problems; in particular, we do not address risk aversion or unobserved agent heterogeneity

in this paper. This abstraction arises from our focus on obtaining consistent estimates (potentially

for a large number of parameters) while maintaining computational tractability. Generalizing our

estimation procedure to accommodate a richer class of agent models may expand its applicability

in practice. Further, our non-parametric approach may be unsuitable for settings with limited data,

because it may require estimating many parameters if the action or outcome space is large.

The remainder of the paper is organized as follows. §2 defines the agent model, presents the

associated estimator, and establishes consistency. §3 presents an exact formulation of the estima-

tor as an integer program and discusses the computational challenges of the exact representation.

§4 develops an approximate estimator and an accompanying solution technique, which dramat-

ically improve tractability while preserving consistency of the exact estimator. §5 describes the

randomized experiment and demonstrates the application of our estimator to experimental data.

§6 concludes. All proofs are contained in the electronic companion.

1.1. Related literature

Existing work on estimating principal-agent models is relatively limited. Several papers have fo-

cused on employee compensation. Ferrall and Shearer (1999) use payroll records of copper mine

workers to estimate the cost of employee risk aversion. Paarsch and Shearer (2000) use a tree-

planting firm’s records to estimate the impact of providing piece-rate compensation over fixed

wages, and Shearer (2004) addresses the same question through a field experiment. Duflo et al.

(2012) estimate an agent model to assess the impact of financial incentives for schoolteachers and

use the model to estimate cost reductions associated with a counterfactual payment scheme. Misra

et al. (2005) and Misra and Nair (2011) both estimate agent models based on salesforce compen-

sation and empirically validate the models on out-of-sample data. Gayle and Miller (2015) focus
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on identifying a general principal-agent model motivated by managerial compensation. Georgiadis

and Powell (2021) provide conditions under which a single A/B test can estimate the impact of

marginal changes to an incentive contract, using the classical principal-agent model from Holm-

strom (1979). Applications beyond employee compensation include agriculture (de Zegher et al.

2017) and healthcare (Vera-Hernandez 2003, Lee and Zenios 2012, Aswani et al. 2019).

Previous work on estimating principal-agent models have used a variety of methods, including

least squares (Lee and Zenios 2012), simulated method of moments (Paarsch and Shearer 2000,

Misra et al. 2005, Misra and Nair 2011, Duflo et al. 2012), simulation-based maximum likelihood

estimation (Ferrall and Shearer 1999, Vera-Hernandez 2003, Aswani et al. 2019), and numerical

minimization of a sum-of-squares criterion (Gayle and Miller 2015). Our approach differs in that we

formulate the estimation problem as an integer program, which is made possible by our specification

of the agent model, in particular by assuming agent actions and outputs are discrete.

We solve the estimation problem using a column generation algorithm that exploits statistical

properties of the formulation. Column generation methods have been successfully applied to solve

large-scale linear and integer programs in which an extremely large number of variables is the

main obstacle to obtaining optimal solutions (Vanderbeck and Wolsey 1996, Barnhart et al. 1998,

Lubbecke and Desrosiers 2005). These methods typically involve solving a tractable master problem

that restricts attention to a subset of decision variables, and selectively introducing variables into

the formulation until a certificate of optimality or alternative termination criterion is met. In

contrast to existing column generation methods that select columns using dual information, our

algorithm uses a series of non-parametric hypothesis tests to identify variables to introduce into the

master problem. This approach is viable in our setting because the decision variables are mapped

to empirical probability distributions constructed from the data, giving them a clear statistical

interpretation. By comparison, existing column generation methods have typically been applied

to deterministic settings where the model parameters may not have any statistical meaning (see

Lubbecke and Desrosiers (2005) for a review).

The estimation problem we consider is also closely related to a recent line of research on in-

verse optimization, in which optimization model parameters are inferred from (potentially noisy)

solution data. Existing approaches to inverse optimization have focused on estimating parameters

of linear programs (Chan et al. 2018) or general convex optimization problems (Keshavarz et al.

2011, Bertsimas et al. 2015, Aswani et al. 2018). Similar to our paper, the literature on inverse

optimization is often motivated by an interest in estimating a model of agent decision-making from

data (Aswani et al. 2018, Esfahani et al. 2018). Our paper differs in that instead of assuming the

agent solves a convex optimization problem, we assume they select a utility-maximizing action

from a discrete set, which calls for a different solution approach.
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1.2. Notation

For convenience, we describe notational conventions here. Sets are denoted by upper case letters,

scalars by lower case letters, and vectors and matrices by lower case, boldfaced letters. For a m×d

matrix x, let xa be the ath row, and let xaj be the entry in the ath row and jth column. For vectors

x and y, let ‖x‖1 =
∑m

a=1

∑d

j=1 |xaj| denote the `1-norm, and let x ◦y =
∑m

a=1

∑d

j=1 xajyaj be the

elementwise product. For a matrix of random variables xn, we use both xn −→ x0 and plimn→∞xn =

x0 to mean xn converges elementwise in probability to x0 as n−→∞, unless otherwise specified.

Define the indicator variable I{·}= 1 if the statement {·} is true, and 0 otherwise. For simplicity,

we use E(·) for all expectations and Pr(·) for all probabilities throughout the paper.

2. Estimator

In this section, we define the principal-agent model (§2.1), formulate the estimator (§2.2), and

prove its statistically consistency (§2.3).

2.1. Principal-agent model and contract data

Our principal-agent model is a discrete analogue to the canonical model introduced by Grossman

and Hart (1983). We choose this model for both its simplicity and generality. The interaction

between the principal and agent proceeds as follows. The principal selects a contract to offer

the agent, which is a mapping of payments to outcomes (i.e., agent output). Outcomes depend

stochastically on a costly action (i.e., effort) taken by the agent. Outcomes are observed by both

parties, while actions are observed only by the agent.

Let A and J index the set of possible actions and outcomes, respectively, where |A| = m and

|J | = d. Let ξ be a discrete random variable denoting the outcome, where ξ ∈ J . We denote a

contract by r∈Rd+, where rj is the payment to the agent if outcome j is realized. Let c∈Rm+ denote

action costs, where ca is the cost to the agent of taking action a. The dependence of outcomes

on actions is governed by a parameter matrix π ∈ Rm×d+ , where πaj denotes the probability that

action a leads to outcome j. We use πa ∈Rd to denote the probability mass function over outcomes

associated with action a.

Given a contract r, the agent selects an action to maximize their expected utility by solving

max
a∈A

{∑
j∈J

πajrj − ca

}
. (1)

We assume that there exists at least one action that yields non-negative expected utility for the

agent. If for each a∈A the distribution πa is known, the principal’s problem of selecting a utility-

maximizing contract can be formulated as a convex optimization problem (Grossman and Hart

1983). We take an inverted perspective in this paper, by instead supposing that the distributions
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πa, a ∈A are unknown, but may be estimated given appropriate data. In particular, suppose we

have data from n identical agents,2

(ri, ξi), i∈ I, (2)

where I indexes pairs of incentive contracts and outcomes, and |I|= n. Let R⊆ Rd be the set of

all possible values of ri. Further, we assume the contract set R is bounded, in that there exists

a constant r̄ such that r̄ = supr∈R ‖r‖0 <∞. The assumption that R is bounded ensures that the

contracts ri remain bounded as n−→∞.

Next, suppose we have no observations of past agent actions, and only know the agent’s action

set A and associated costs, c. A natural question in this setting is to predict the distribution of

the outcome ξn+1 under a new contract rn+1. Note that if π is known, then this prediction task

reduces to solving the agent’s problem (1) under rn+1, identifying the optimal action a, and taking

πa to be the distribution of ξn+1. Therefore, the matrix π is the key model primitive for predicting

the outcome associated with rn+1. Our goal is to estimate the parameter π from data that takes

the form given in (2).

The assumption that agent costs are unknown is relatively mild in our setting, given that agent

actions are also hidden. From a model-fitting perspective, it suffices to select c to cover a range of

possible costs to the agent. In our numerical study in §5, we take a machine learning perspective by

treating the number of agent actions m and the set of costs c as hyperparameters that are tuned

prior to fitting the model.

2.2. Estimator formulation

Next, we formalize the estimator for π.3 Let

A(r,π) = argmax
a∈A

{∑
j∈J

πajrj − ca

}
(3)

denote the set of optimal actions under the contract r and the model π. Let y ∈ {0,1}n×d be a

binary matrix that encodes historical outcomes, where yij = 1 if ξi = j and yij = 0 if ξi 6= j. For each

i∈ I, let xi be a decision variable representing the agent action under contract ri, and let ω ∈Rm×d+

be a set of auxiliary variables, which will be used to model empirical probabilities. For fixed π, the

loss function Ln(π) is then given by

Ln(π) = minimize
x,ω

∑
a∈A

∑
j∈J

|πaj −ωaj| (4a)

2 We extend our model to accommodate heterogeneous agents in §EC.3 of the electronic companion.

3 Throughout the paper, we shall use estimator to refer to an optimization problem or algorithm, and estimate to
refer to its solutions.
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subject to xi ∈A(ri,π), i∈ I, (4b)

ωaj =
1

|{i|xi = a}|
∑

i∈{i|xi=a}

yij, a∈A, j ∈ J. (4c)

In the formulation above, (4b) restricts each xi to be an optimal action under ri and π, and (4c)

defines ωaj to be the empirical probability that action a leads to outcome j. Note that the empirical

probability ωaj depends on the cardinality of the set {i|xi = a}, which is the implied number of

data points for which the action a is optimal for the agent under π. The objective (4a) then simply

measures the error between the model probabilities π and the implied empirical probabilities ω.

Next, let Π be a compact set representing the parameter set for π. The estimate is then attained

at a minimizer of the loss function over Π:

(PA) π̂n ∈ argmin
π∈Π

Ln(π).

It will be convenient to interpret the parameter set Π as the Cartesian product of m probability

simplices – one for each action a∈A.

2.3. Statistical consistency

Let us now suppose there exists a “true” model parameter π0 that is responsible for generating

the data (ri, ξi), i ∈ I. We say an estimator is statistically consistent if it produces a sequence

of estimates π̂n such that π̂n −→ π0 as n −→ ∞. This raises a natural question: Under what

conditions, if any, is PA a consistent estimator? In general, whether an estimator is consistent

depends on the specification of the loss function. Our main result in this section, Theorem 1,

shows that minimizing the loss function Ln(π) defined in (4) produces an estimate that is indeed

consistent.

Before addressing the consistency of PA, we first formalize the statistical model that generates

the data. First, we define an important set that is used throughout our analysis:

Ra(π) =

{
r∈R

∣∣∣∣a∈ argmax
a∈A

∑
j∈J

πajrj − ca

}
, (5)

Here, Ra(π) represents the subset of the contract set R where action a∈A is optimal for the agent,

given the model π. Next, we impose two assumptions. The first assumption formalizes the data

generation process.

Assumption 1 (Data). The data (ri, ξi), i ∈ I, are independent samples of random variables

(r, ξ), where (i) (r, ξ) are jointly distributed with support R× J , (ii) r has continuous marginal

density function f(r), (iii) Pr(r ∈Ra(π))> 0 for all a ∈A and π ∈Π, and (iv) ξ has conditional

mass function π0
aj = Pr(ξ = j|r∈Ra(π0)), where π0 ∈Π.
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Assumption 1(iv) states that there exists a “true” parameter – denoted π0 – that is responsible

for generating the outcomes ξi, based on the agent model (1). The statements in (ii) and (iii) are

regularity conditions that we use to prove convergence of π̂n to π0.4 Our assumption that the data

are independent and identically distributed (i.i.d.) is commonly used in the statistical learning

literature to obtain similar consistency results.5

Next, we consider an additional condition that is important for our main result in Theorem 1.

Assumption 2 (Identifiability). For every π ∈Π such that π 6=π0, there exists an (a, j) such

that

πaj 6=
∑
b∈A

π0
bj ·Pr(r∈Rb(π0)|r∈Ra(π)).

Assumption 2 is an identifiability condition, which ensures that the unknown parameter π0 can be

learned from the data. This assumption implies a one-to-one mapping between the parameter set Π

and the joint distribution of the random variables (r, ξ). In other words, Assumption 2 guarantees

that the distribution of (r, ξ) is unique for each π ∈Π. In the absence of model identifiability, there

may exist multiple parameters values in Π that generate the same distribution in the observed data;

in this case, it is impossible for any estimation procedure to pinpoint the true π0. Identifiability

conditions like Assumption 2 are commonly imposed to prove consistency of an estimator (Van der

Vaart 2000).

We can now present the main result of §2, which shows that the estimator PA uncovers the true

model parameter π0 under Assumptions 1 and 2.

Theorem 1. Let Assumption 1 hold. Then π̂n −→π0 for any π0 ∈Π if and only if Assumption

2 holds.

Theorem 1 states that the estimator PA is statistically consistent, which is defined as the conver-

gence of estimates to the true model parameters (Van der Vaart 2000, Casella and Berger 2002,

Bickel and Doksum 2015). Despite being an asymptotic property, consistency is valuable in prac-

tice, because it guarantees that parameter estimates will generally improve with additional data.

4 The assumption that the contract data ri, i∈ I is generated by a continuous density function f(r) is important for
our technical results. Intuitively, because the ri are input data, assuming this continuity provides the estimator with
more information, which makes precise inference of π0 possible under the identifiability condition in Assumption
2. If the contract data is instead generated by a discrete distribution supported on a subset of R, then a stronger
identifiability than Assumption 2 is needed to compensate for the loss of information. We consider such a case in
§EC.4 of the electronic companion.

5 Because we assume the data is generated by n independent agents making decisions simultaneously, which is plausible
in online labor platforms, the i.i.d. assumption is not particularly restrictive for our setting. Moreover, this assumption
is not strictly necessary to achieve consistency, depending on the problem setup. In §EC.4 of the electronic companion,
we consider a variation of the model where π0 can be estimated by dynamically selecting the contracts to offer the
agent. This breaks the independence assumption on the contracts ri, but allows for consistent estimation of π0 under
a different set of assumptions.
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Conversely, an inconsistent estimator may produce inaccurate estimates of the unknown parame-

ters, even if data is abundant. In pathological cases, the accuracy of an inconsistent estimator may

even decrease with additional data. Therefore, a proof of consistency provides some assurance that

parameter estimates will be “reasonable” under moderate sample sizes, and that the accuracy of

the estimates will continue to improve with additional data.

Having established that the estimate π̂n behaves desirably, we now shift our attention to solving

the estimator PA. Note that in a setting where agent actions are observable, a consistent estimate

of π0 can be obtained by simply counting the relative frequency of outcomes associated with each

action. In contrast, when agent actions are hidden, the estimation problem is non-trivial. At a

high level, our approach for solving PA will be to leverage integer programming within a broader

solution algorithm. The key challenge we face in solving PA is to develop a solution method that

satisfies two criteria: (1) is computationally efficient, and (2) preserves the statistical consistency

of PA. We note here that an alternative solution approach might be to formulate and solve a

convex approximation to PA, although doing so is may result in an inconsistent estimator. We will

therefore focus on obtaining solutions to PA directly.

3. Exact Integer Programming Formulation

In this section, we present an approach for solving PA exactly using integer programming. We will

assume throughout that the parameter set Π is of the form

Π =

{
π ∈Qπ

∣∣∣∣∣π≥ 0,
∑
j∈J

πaj = 1 for a∈A

}
, (6)

where Qπ is a polyhedron defined by a set of linear inequalities in π. Assuming that π ∈Qπ permits

the formulation of the estimator as a mixed-integer linear program, while also allowing Π to capture

various shape constraints on the parameter π. For example, if

Qπ =

{
π

∣∣∣∣∣
d∑
k=j

πak ≤
d∑
k=j

π(a+1)k, a∈ {1,2, . . . ,m− 1}, j ∈ J

}
, (7)

then for any a ∈ {1,2, . . . ,m− 1}, Π forces the distribution πa+1 to stochastically dominate πa in

the first order, meaning costlier actions taken by the agent are more likely to generate high output.

Alternatively, if Qπ =Rm×d, then Π permits each πa to be any valid probability mass function over

the outcomes J . We will assume throughout that Π satisfies (6) unless otherwise stated.

Although PA is based on an intuitive loss function, a naive formulation of PA as a mathematical

program yields non-linear terms in the objective, due to how the variable ω enters the loss expres-

sion (4a). However, the estimation problem is amenable to mathematical programming approaches

under a slight modification. Consider the proxy loss function
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Zn(π) = minimize
x,η,ω

1

n

∑
a∈A

∑
j∈J

ηaj|πaj −ωaj| (8)

ηaj = |{i|xi = a}|, a∈A,j ∈ J,

(4b)− (4c).

Here, ηaj is the number of observations for which action a is implied to be optimal for the agent

under π. The loss function Zn(π) can be interpreted as a scaled version of Ln(π), where the (a, j)

component of Ln(π) is scaled by ηaj/n. The proxy estimator is then given by

π∗n = argmin
π∈Π

Zn(π). (9)

Next, we show that (9) can be formulated exactly as a mixed-integer linear program. With a slight

abuse of notation, let x∈ {0,1}m×n be binary variables, where xia = 1 if a∈A(ri,π), and xia = 0 if

a /∈A(ri,π). Introducing the auxiliary variables zaj to linearize the absolute values in the objective

of (8) (Bertsimas and Tsitsiklis 1997) yields the following formulation:

minimize
π,x,z

∑
a∈A

∑
j∈J

zaj (10a)

subject to zaj ≥
1

n

∑
i∈I

(yij −πaj)xia a∈A, j ∈ J, (10b)

zaj ≥
1

n

∑
i∈I

(πaj − yij)xia a∈A, j ∈ J, (10c)(∑
j∈J

πajr
i
j − ca

)
xia ≥

(∑
j∈J

πbjr
i
j − cb

)
xia, i∈ I, a∈A, b∈A, (10d)

(PA-C)
∑
j∈J

πaj = 1, a∈A, (10e)∑
a∈A

xia = 1, i∈ I, (10f)

xia ∈ {0,1}, a∈A, (10g)

πaj ≥ 0, a∈A, j ∈ J, (10h)

π ∈Qπ. (10i)

The objective (10a) and constraints (10b)–(10c) represent the error function 1
n
‖η ◦ (π−ω)‖1 given

in (8). Constraint (10d) ensures that xia = 1 only if a∈A(ri,π), that is, only if action a is optimal

under contract ri and the parameter π. Constraint (10e) ensures that the probability vector πa

sums to 1 for each a ∈A, and constraint (10f) forces exactly one action to be selected as optimal

for each contract i ∈ I. Next, we establish an equivalence between the proxy estimator PA-C and

the original estimator PA.
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Proposition 1. The estimate π∗n attained at a solution to PA-C is (i) a minimizer of the

proxy loss function Zn(π), (ii) an asymptotic minimizer of the loss function Ln(π), |Ln(π∗n) −

Ln(π̂n)|−→0, and (iii) consistent, π∗n−→π0.

In Proposition 1, (i) establishes that the mathematical program PA-C is equivalent to the proxy

estimator (9), (ii) establishes that solving PA-C asymptotically produces an optimal solution to

PA, and (iii) confirms that PA-C is also a consistent estimator for π0. Based on the equivalence in

Proposition 1, we will refer to PA-C as the exact estimator in the remainder of the paper.

The intuition behind Proposition 1 is as follows. Note that Zn(π) can be interpreted as a re-

weighted version of Ln(π), where for each (a, j), the term |πaj − ωaj| is multiplied by the weight

ηaj/n. As n −→∞, the minimal possible loss for both estimators occurs when πaj = ωaj for all

(a, j). Therefore, minimizing Zn(π) also minimizes Ln(π), in the limit.

Next, note that (10a)–(10d) contains bilinear terms due to the product of the decision variables

x and π. Because x and π are binary and continuous variables, respectively, these product terms

can be linearized exactly using well-known reformulation techniques (Glover 1975, Adams et al.

2004), leading to a mixed-integer linear program. However, a drawback of this approach is that lin-

earizing products of variables is known to yield weak linear programming relaxations (Adams et al.

2004, Luedtke et al. 2012), which can make solving PA-C using off-the-shelf optimization solvers

challenging, even for moderately-sized data sets. In the next section, we propose an approximation

to PA-C that bypasses the linearization step while remaining statistically well-behaved.

4. Restricted Estimator and Statistical Column Generation

We begin this section by proposing an approximation of PA-C – which we call PA-D – based on

replacing the parameter set Π with a discrete subset Π̃ (§4.1). We then present a data-driven

procedure for constructing the parameter set Π̃, and investigate the behavior of the resulting esti-

mates (§4.2). Then, to solve PA-D, we present a column generation algorithm based on hypothesis

testing, and show that the algorithm preserves statistical consistency (§4.3). We conclude the sec-

tion by comparing the numerical performance of the statistical column generation algorithm with

off-the-shelf optimization solvers (§4.4).

4.1. Restricted estimator

Our approach to approximately solving PA-C will be to minimize the proxy loss Zn(π) over a

restricted parameter set Π̃⊆Π instead of Π. The advantage of this “restricted estimator” is that

the agent optimality conditions (10d) can be enforced without introducing bilinear terms into

the formulation, which allows us to avoid the computational challenges that often accompany

linearization techniques.
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Next, we define a set that plays a critical role in our estimation procedure: Let V =

{v1,v2, . . . ,v|S|} ⊆Rd+ be a set of vectors indexed by S, where
∑

j∈J vsj = 1 and vs ≥ 0 for all s∈ S.

We refer to each vs as a candidate distribution. Next, let the restricted parameter set be defined

as

Π̃ =
{
π ∈Π

∣∣∣πa ∈ V for a∈A
}
, (11)

and let

π̃n = argmin
π∈Π̃

Zn(π) (12)

be the associated estimate. For each action a ∈ A, the parameter set Π̃ restricts the probability

distribution πa to lie in the set of candidate distributions V . We assume throughout that Π̃ is

non-empty.6

Similar to the exact estimator (9), the restricted estimator (12) can also be formulated as a

mixed-integer linear program. The intuition behind this formulation is to construct the estimate

π in a row-wise manner by assigning a candidate distribution in V to each row of π. To that

end, let w ∈ {0,1}m×S, x ∈ {0,1}n×S and φ ∈ {0,1}n×m×S be binary variables with the following

interpretations: was = 1 if the candidate distribution vs is assigned to be the distribution πa, x
i
s = 1

if the action assigned to candidate distribution vs is optimal under contract ri, and φias = 1 if the

candidate distribution vs is assigned to distribution πa and action a is optimal under ri and π.

Similar to PA-C, let z ∈ Rd×S+ be auxiliary variables used to linearize the absolute values in the

loss function Zn(π). Then the restricted estimator (12) is equivalent to the following mixed-integer

linear program:

minimize
π,w,x,z,φ

∑
s∈S

∑
j∈J

zsj (13a)

subject to zsj ≥
1

n

∑
i∈I

(yij − vsj)xis, s∈ S, j ∈ J, (13b)

zsj ≥
1

n

∑
i∈I

(vsj − yij)xis, s∈ S, j ∈ J, (13c)

∑
b∈A

∑
s∈S

(∑
j∈J

vsjr
i
j − cb

)
φibs ≥

(∑
j∈J

vs′jr
i
j − ca

)
wat, i∈ I, a∈A,s′ ∈ S, (13d)

(PA-D)
∑
s∈S

was = 1, a∈A, (13e)

6 The parameter set Π̃ may be empty if the requirement that πa ∈ V for a ∈A conflicts with the requirement that
π ∈ Qπ from (6). In this case, non-emptiness of Π̃ can be guaranteed by projecting the candidate distributions
contained in V onto the polyhedron Qπ.
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a∈A

∑
s∈S

φias = 1, i∈ I, (13f)

xis =
∑
a∈A

φias, i∈ I, s∈ S, (13g)

φias ≤was, i∈ I, a∈A,s∈ S, (13h)

πaj =
∑
s∈S

wasvsj, a∈A,j ∈ J, (13i)

xis ∈ {0,1}, i∈ I, s∈ S, (13j)

was ∈ {0,1}, a∈A,s∈ S, (13k)

φias ∈ {0,1}, i∈ I, a∈A,s∈ S, (13l)

π ∈Qπ. (13m)

The objective (13a) and constraints (13b)–(13c) together represent the loss function Zn(π). Con-

straint (13d) enforces the agent’s optimality conditions by ensuring that φias = 1 only if candidate

distribution vs is mapped to πa, and if action a is optimal for the agent under ri and π. Con-

straint (13e) forces exactly one candidate distribution in V to be mapped to each distribution πa.

Constraint (13f) ensures that only one candidate distribution in V and action a ∈ A is selected

for contract ri. Constraint (13g) forces xis = 1 if candidate distribution vs is mapped to πa and

if action a is optimal under ri and π. Constraint (13h) ensures φias = 1 only if vs is mapped to

πa. Constraint (13i) defines πa as the candidate distribution from V that is assigned by w, and

constraint (13m) represents additional shape constraints imposed by the polyhedron Qπ. The key

distinction between PA-D and PA-C is that the discrete nature of the parameter set allows the

key decision variables (w,x,φ) to be binary, which allows us to represent the agent’s optimality

conditions in a way that circumvents the need for product terms.

Note that Zn(π̃n) − Zn(π∗n) represents the error in the loss function that arises from solving

the restricted estimator PA-D instead of the exact estimator PA-C. Next, we present a random

clustering procedure for constructing the set of candidate distributions V , and provide a finite-

sample characterization of the error Zn(π̃n)−Zn(π∗n) under the proposed procedure.

4.2. Construction of candidate distributions and finite-sample error

Because PA-C is a consistent estimator of π0 (by Proposition 1), we might expect PA-D to also

produce a reasonable estimate of π0 if the loss function error Zn(π̃n) − Zn(π∗n) is sufficiently

small. Additionally, note that Zn(π̃n) is the minimal loss when the restricted parameter set Π̃ is

substituted for Π. As a result, the magnitude of the gap Zn(π̃n)−Zn(π∗n) depends on the restricted

parameter set Π̃, and by extension, the set of candidate distributions V . Here, we present a method

for constructing Π̃, based on leveraging the observed data (ri, ξi), i ∈ I to guide the construction

of V . Our approach to constructing the candidate distributions V is summarized in Algorithm 1.
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Algorithm 1: Sample-based construction of candidate distributions

Input: Data (ri, ξi), i∈ I, parameter ρ> 0.
1. Randomly sample a subset S from I.
2. for each s∈ S:

Bs = {r∈R|‖rs− r‖2 ≤ ρ},
Is = {i∈ I|ri ∈Bs}.
for each j ∈ J :

vsj = 1
ns

∑
i∈Is y

i
j.

Output: Candidate distributions V = {vs for s∈ S}.

Algorithm 1 involves selecting subsets of the contract data, computing the empirical mass func-

tion over outcomes for each subset, and designating each of these empirical mass functions as a

candidate distribution, vs. Note that the sth candidate distribution is based on the outcomes of all

contracts ri that fall within a ball Bs ⊆R; accordingly, we shall refer to the collection of data points

indexed by Is as the sth cluster. The intuition for constructing the candidate distributions V in this

manner is simple: Based on the agent model (1), contracts that are within a small distance of each

other are likely to induce the same action from the agent. Therefore, the empirical distribution of

outcomes for all contracts that lie within the ball Bs can be assumed to approximate one of the

rows of the true parameter matrix π0 (although which row it approximates remains unknown).

Next, we show that the error Zn(π̃n)−Zn(π∗n) is well behaved if V is constructed using Algorithm

1. We first impose the following assumption.

Assumption 3 (Clustering condition). For each a ∈ A, there exists s ∈ S such that Bs ⊆

Ra(π
0) and Is 6= ∅.

Assumption 3 states that for every action a, Algorithm 1 produces a ball Bs that is entirely

inside the subset of the contract set R that induces action a from the agent, Ra(π
0). Note that if

Bs ⊆Ra(π0) then every contract in cluster s induces action a from the agent. This implies that vs

is an empirical distribution sampled from π0
a. Therefore, Assumption 3 implies that for each row

of π0, there exists at least one candidate distribution in V that is constructed by sampling from

that row. Note that Assumption 3 is more likely to hold when S in Algorithm 1 is large (because

we construct many balls Bs) and ρ is small (because each ball is smaller).

Our next result shows that if Assumption 3 and an additional condition on Π holds, we can

bound the approximation error Zn(π̃n)−Zn(π∗n).

Theorem 2. Let Assumption 3 hold, and let V be constructed using Algorithm 1. Further,

suppose Π = {π≥ 0|
∑

j∈J πaj = 1, a∈A}. Then there exists κ∈ (0,1) such that for any ε∈ (0,1),

Pr(|Zn(π∗n)−Zn(π̃n)|> ε)≤O(n2κn). (14)
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We offer a few remarks on Theorem 2. First, observe that the bound is not monotonic due to the

n2 term, which implies that the bound can become looser in n for small n. This occurs because our

proof approach depends on constructing a feasible solution π̄, and bounding the absolute number

of observations where the hidden agent action is “misclassified” by π̄. Thus, the n2 term reflects

the possibility that the number of misclassified actions may increase with the sample size. Further,

note that if κ is close to 1 and n is of moderate size, the bound in Theorem 2 may be vacuous.

However, because it is guaranteed that κ ∈ (0,1), it is straightforward to verify that n2κn −→ 0,

which implies that the error Zn(π̃n)−Zn(π∗n) eventually vanishes in n.

Second, note that the rate depends on the constant κ, with lower values of κ leading to faster

convergence. While κ is not particularly interpretable, it can be shown to decrease in ρ and increase

in the number of clusters |S|. Note from Algorithm 1 that ρ is the radius of the ball Bs, for

each cluster s ∈ S. Intuitively, for fixed n, larger values of ρ makes each ball Bs contain a larger

number of observations, which leads to faster convergence. Conversely, larger values of |S| will slow

convergence, for the following reason: Because the bound depends in part on the cluster that has

the fewest observations, large values of |S| will increase the probability that at least one of the

clusters has very few data points, which weakens the bound. Therefore, the rate n2κn is fastest

when ρ is large and |S| is small. However, note that Assumption 3 is more likely to hold in the

opposite case: when ρ is small and |S| is large. Therefore, selecting ρ and |S| requires balancing

their effects on κ with ensuring that Assumption 3 holds.

Third, observe that the bound expression is invariant to ε provided ε ∈ (0,1). Intuitively, this

occurs because the key object of interest in the proof is a sequence of Bernoulli variables (which

contribute to the loss function error in a binary manner) that we use to bound the number of times

the hidden action is misclassified by a constructed solution π̄. However, we note that ε does indeed

appear in the non-dominant terms of the bound, as we would expect (see (EC.37) in the proof of

Theorem 2).

Note that Theorem 2 is only valid for the case where each πa is permitted to be any valid proba-

bility vector (i.e., Qπ =Rm×d). This additional condition is imposed on Π because the randomness

of the set V can render the solution constructed by our proof approach infeasible for a more general

parameter set Π. However, this additional assumption on Π is only needed for the finite-sample

characterization of the error in Theorem 2; Proposition 2 below shows that the solution from the

restricted estimator, π̃n, is asymptotically optimal with respect to the exact estimator PA-C for

any Π that satisfies (6).

Proposition 2. Let Assumption 3 hold. Then PA-D is asymptotically optimal with respect to

PA-C: |Zn(π∗n)−Zn(π̃n)| −→ 0.
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The asymptotic optimality established in Proposition 2 provides assurance that PA-D is a reason-

able approximation to PA-C when n is large, which is precisely the regime where PA-C is likely to

be intractable. As a consequence, we should also expect the restricted estimator to produce “good”

estimates of π0 for larger sample sizes. Having established that PA-D reasonably approximates

PA-C, we now focus on developing a solution technique for tackling the mixed-integer program

PA-D.

4.3. Statistical column generation

Observe that the size of the optimization problem PA-D grows with the number of candidate

distributions in V , which can make PA-D computationally intractable if V is large. In this section,

we propose a solution algorithm that involves solving PA-D over a subset of V – which we shall call

V + – which dramatically improves the tractability of the estimator PA-D, with minimal degradation

in estimation error. Because each candidate distribution in V is mapped to a set of decision variables

in PA-D (where the set S indexes the distributions in V ), our solution technique can be interpreted

as a column generation algorithm.

The key step of our approach is a series of non-parametric hypothesis tests, which identifies a

subset V + by performing pairwise comparisons of candidate distributions in V . The intuition is

as follows. Consider any candidate distribution vs ∈ V , and recall from Algorithm 1 that vs is the

empirical mass function over outcomes associated with the contracts in the sth cluster. If there

exists another cluster s′ such that all contracts in clusters s and s′ induce the same action from

the agent, then vs and vs′ can be interpreted as two empirical mass functions that were generated

by the same probability distribution (i.e., one of the rows of π0). Therefore, our goal will be to

apply non-parametric hypothesis tests to identify whether any pairs in V are generated by the

same distribution, and to discard those that are effectively “duplicates”.

4.3.1. Hypothesis test function. A hypothesis test typically consists of four main steps:

(1) a null hypothesis is specified that we wish to test, (2) a significance level α (i.e. Type I error

rate) is specified for the test, (3) a test statistic is computed based on the sample data, and (4) the

null hypothesis is rejected if and only if the magnitude of the test statistic exceeds a threshold τα,

where τα depends on α. In the context of our column generation algorithm, the null hypothesis we

will test is whether two candidate distributions vs and vs′ are generated from the same probability

distribution (i.e., the same π0
a), for many pairs (s, s′).

We first introduce some additional definitions that are required by our algorithm. For each s∈ S,

define a vector ψs ∈ Zd+, where the jth entry is the frequency of outcome j in the sth cluster of

Algorithm 1. The vector ψs is simply a convenient form for representing the candidate distribution

vs within our hypothesis tests. Let ns = |Is| be the number of observations in cluster s, and note
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ns =
∑

j∈J ψsj for s ∈ S. Next, note that for each s ∈ S, by the weak law of large numbers there

exists νs ∈ Rd+ such that ‖νs − vs‖ −→ 0 as ns −→∞. We now define the main ingredient of the

algorithm, which is a test function that declares whether ψs and ψs′ are statistically different at a

significance level α.

Definition 1. Hα(ψs,ψs′) :Zd+×Zd+ 7→R is a test function if Pr(Hα(ψs,ψs′)> 0|νs 6= νs′)−→ 1

as ns −→∞ and ns′ −→∞ and Pr(Hα(ψs,ψs′)> 0|νs = νs′)≤ α.

Definition 1 states that the hypothesis test function returns a positive value if and only if the null

hypothesis – that the candidate distributions vs and vs′ are generated by the same probability

distribution – is rejected. This definition subsumes many two-sample, non-parametric hypothesis

tests. One example is the Kolmogorov–Smirnov hypothesis test (Massey 1951, Stephens 1974),

which is widely used for its ease of implementation. In particular, the test function is given by

Hα(ψs,ψs′) = sup
j∈J

∣∣∣∣ψsjns − ψs′jns′

∣∣∣∣− τα√ns +ns′

nsns′
,

where τKSα is the critical value associated with a significance level of α (Smirnov 1948). We note here

that the Kolmogorov-Smirnov test is known to be conservative for discrete distributions (Slakter

(1965), Conover (1972)). As a result, selecting τα based on Kolmogorov–Smirnov critical values for

continuous distributions makes α an upper bound on the true Type I error rate in our setting, but

otherwise does not affect the validity of our algorithm. Other examples of non-parametric tests

that fit within our framework are the Anderson-Darling (Anderson et al. 1952, Scholz and Stephens

1987), Chi-squared (Cochran 1952) and the Cramér–von Mises (Anderson 1962) tests.

4.3.2. Algorithm overview. Let S+ index the candidate distributions in V +. We let PA-

D(S+) denote formulation PA-D where S is replaced with the subset S+, and we let PA-D(S) denote

the original formulation with the full set V . Let V − = V \V + and S− = S \S+ denote the omitted

distributions and the accompanying index set, respectively. Given a significance level α, we shall

say two candidate distributions vs and vs′ are statistically different if and only if Hα(ψs,ψs′)> 0;

that is, the null hypothesis that vs and vs′ were generated from a common probability distribution

is rejected. In each iteration of the main loop of the algorithm, we perform a series of hypothesis

tests identify a new candidate distribution to be introduced to V +, and solve PA-D(S+) once there

does not exist any distribution in V − that is statistically different from every distribution in V +

at a significance level of α. Specifically, in each iteration we compute

s∗ = argmax
s∈S−

inf
s′∈S+

Hα(ψs,ψs′).

Intuitively, vs∗ is the distribution in V − that is the “most” different from all distributions in V +,

based on the selected test function Hα. The distribution vs∗ is then added to V + if and only if
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inf
s′∈S+

Hα(ψs∗ ,ψs′)> 0. (15)

If (15) holds, then vs∗ is statistically different from every distribution in V +, and is thus added to

V +. If (15) does not hold, then there are no remaining distributions in V − that are statistically

different from all distributions in V +. In this case, we solve PA-D(S+), and the algorithm terminates.

A summary is given in Algorithm 2.

Algorithm 2: Statistical column generation (PA-D+)

Input: Data (ri, ξi), i∈ I, candidate distributions V produced by Algorithm 1,
significance level α> 0.

Initialize: Set t= 0. Select any s∈ S. Set S+ = {s} and S− = S \ {s}.
1. Let s∗ = argmaxs∈S− infs′∈S+ Hα(ψs,ψs′).

if infs′∈S+ Hα(ψs∗ ,ψs′)≤ 0 or S− = ∅,
Solve PA-D(S+) and obtain solution π+

n , set T = t, and terminate.
else Update t← t+ 1, S+←{S+, s∗}, and S−← S− \ {s∗}. Return to Step 1.

Output: Parameter estimate π+
n , iteration count T .

We will use “PA-D+” to denote the estimator represented by Algorithm 2. There are two main

differences between existing column generation methods for large-scale integer programs and the

one we propose in Algorithm 2. First, the column generation process in Algorithm 2 involves

performing several hypothesis tests, which are fast to compute. By comparison, existing methods

for integer programs typically generate columns by solving an auxiliary optimization problem (often

called the pricing problem due to its use of dual information), which is often an integer program

itself and may be difficult to solve (Lubbecke and Desrosiers 2005). Second, Algorithm 2 is not

guaranteed to produce an optimal solution to PA-D; in contrast, the purpose of existing column

generation methods is to solve the “original” optimization problem exactly. Therefore, Algorithm

2 effectively sacrifices optimality for computational efficiency. However, although Algorithm 2 does

not produce optimal solutions to PA-D, it can be shown to produce a consistent estimate of π0,

which is our main objective in this paper.

4.3.3. Consistency and iteration bound. Next, we present the main result of §4: Theorem

3 shows that the approximate solution obtained by Algorithm 2 preserves the consistency of the

exact estimator PA-C.

Theorem 3. Let π+
n be the estimate obtained by PA-D+ (Algorithm 2). Then

π+
n −→π0.
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As a consequence of Theorem 3, we should expect π+
n to provide a reasonable estimate of the

unknown parameter π0. However, note that Theorem 3 is an asymptotic result only, and that for

small n the estimate from PA-D+ may be less accurate than the exact estimate obtained by solving

PA-C. We compare the performance of these two approaches numerically in §4.4.

Note that because the termination condition in Algorithm 2 depends on the outcome of a series

of hypothesis tests, the total number of iterations, denoted by T , is a random variable. In Theorem

4 below, we show that E[T ] is bounded by a function of the problem parameters, including the

significance level α used in the hypothesis testing step of Algorithm 2.

Theorem 4. Let Assumption 3 hold. Further, assume that for each s ∈ S, there exists a ∈ A
such that Bs ⊆Ra(π0). Then

E[T ]≤m[1 +α · |S| · (|S| −m)].

The proof of Theorem 4 relies on upper bounding Pr(T >m) – the probability that the number of

iterations in Algorithm 2 exceeds the number of agent actions. In particular, we show in the proof of

Theorem 4 that Pr(T >m)≤ αmS. The intuition for the preceding inequality is as follows. Observe

that by construction, the candidate distribution vs is the empirical distribution over outcomes

associated with all contracts ri such that ri ∈Bs. Because for each s∈ S, Bs ⊂Ra(π0) for some a∈
A (by assumption), there are at most m unique distributions from which the empirical distributions

vs are generated, which are π0
a, a∈A. Next, note that in Algorithm 2, a candidate distribution is

only added to the set V + if the hypothesis testing step finds it to be statistically different from

every distribution in V +. Therefore, the event {T >m} implies that a Type I error has occurred

at some point during Algorithm 2; that is, a candidate distribution was added to V+ despite the

underlying distribution π0
a already being “represented” in V+ by another candidate distribution.

Because α bounds the probability of making a Type I error, smaller values of α will make

Algorithm 2 more conservative in adding new distributions to V +, thus increasing the probability

of the event {T >m}. Conversely, if α is large, then it becomes more likely that a given distribution

vs is determined to be statistically different from those in V +, which leads to more distributions

being added to V +, and thus a greater number of iterations. The dependence on S arises for a

similar reason; as S increases, so does the number of omitted distributions V −, which increases the

likelihood that there exists a distribution in V − that satisfies the inclusion criterion in Step 2 of

Algorithm 2.

Additionally, note that the bound E[T ] ≤ |S| holds trivially, because T = |S| implies S−T = ∅
by Algorithm 2. As a result, the bound in Theorem 4 may be vacuous if α is large, but is made

meaningful for an appropriate selection of S and α. It is also straightforward to verify that the

assumption in the statement of Theorem 4 implies that |S| ≥m, which confirms that the bound

on E[T ] is strictly positive for all α> 0.
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4.4. Numerical performance

In this section, we compare the performance of three estimation methods using synthetic data. The

first two are solving the exact estimator (PA-C) and the restricted estimator (PA-D) directly with

optimization software. The third is solving the restricted estimator using the column generation

technique outlined in Algorithm 2 (PA-D+). We focus our comparison on the solution times and

estimation errors from the three approaches.

4.4.1. Setup. Recall that m and d denote the number of actions and outcomes, respectively.

We consider five problem sizes, given by (m,d)∈ {(2,2), (4,5), (5,10), (10,20), (20,40)}. For each of

the five problem sizes, we consider three sample sizes, given by n∈ {100,500,1000}. Then for each

combination (m,d,n), we randomly generate π0 from the appropriately-sized parameter set Π given

by (6), where Qπ is given by (7). For each (m,d,n), we randomly generate contract data by sampling

ri uniformly from [1,10]d for each i= 1, . . . , n, and sampling c uniformly from [0,1]m. The outcome

associated with each ri is obtained by solving the agent’s problem (1) under the corresponding π0.

We repeat this procedure for a total of 10 trials for each (m,d,n). To parameterize PA-D, we set

S = 50 and ρ= 10× d. For the hypothesis testing step for PA-D+, we use the discrete analogue of

the two-sample Anderson–Darling test (Scholz and Stephens 1987), and set S = 50, ρ= 10×d and

α= 0.05. We use the optimization solver Gurobi 8.0 to solve PA-C, PA-D and PA-D+.

4.4.2. Results. Table 1 summarizes the average solution time and estimation errors over 10

trials for the three estimators. In each trial, the error associated with PA-C, PA-D and PA-D+ is

given by 1
md
‖π0 −π∗n‖, 1

md
‖π0 − π̃n‖, and 1

md
‖π0 −π+

n ‖, respectively. In all trials, we set a time

limit of 3600 CPU seconds. Dashes in the table indicate instances where an optimal solution was

not found within 3600 CPU seconds for any of the 10 trials. In many of these trials, no feasible

solution was found within 3600 CPU seconds; we therefore only include errors obtained at optimal

solutions to PA-C or PA-D when reporting the average estimation error.

We offer a few observations regarding Table 1. First, note that for each problem size, the esti-

mation error generally decreases in n, which corroborates our consistency results (Proposition 1

and Theorem 3, respectively). Second, for smaller problem instances (e.g., m= 4, d= 5, n= 1000),

PA-C is less computationally expensive than PA-D+, which we posit is a consequence of requiring

fewer binary decision variables. However, PA-D+ generally scales more efficiently in the problem

and sample size than PA-C and PA-D, with the most notable performance improvement occurring

at larger problem instances (e.g., m= 10, d= 20, n= 1000). Third, solving the restricted estimator

PA-D directly with Gurobi is less tractable than solving the exact estimator PA-C with Gurobi.

This is again likely attributable to PA-D requiring many more binary variables than PA-C, due
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to how the restricted parameter set is represented in the formulation PA-D. Nonetheless, the re-

sults indicate that this intractability can be overcome by (approximately) solving the restricted

estimator using the statistical column generation technique, without significantly compromising es-

timation error. Fourth, observe that larger problem sizes are not necessarily more computationally

expensive – for example, the average solution time of the instances (2,2,1000) and (5,10,1000) for

PA-C was 245 and 12 seconds, respectively. We conjecture that this is because the larger problem

sizes offer the estimator additional degrees of freedom in fitting the agent model to the data (due

to containing a larger number of unknown parameters), which allows the optimization problem

to more quickly attain the minimal objective function value. Lastly, the favorable performance of

PA-D+ in the larger instances (e.g., m= 20, d= 40) suggests that our estimator and algorithm can

also be used to tractably approximate contracting problems with continuous actions and outcomes

through discretization.

Note that the purpose of Algorithm 2 is not to generate a provably optimal solution to PA-D,

which is typically the case with similar column generation methods. Instead, our primary goal is

to generate an estimate of the true parameter π0 that is statistically consistent, competitive with

solutions from solving the exact estimator, and attainable in a computationally efficient manner.

Theorem 3 and the numerical results in Table 1 suggest that Algorithm 2 meets each of these

criteria.
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PA-C PA-D PA-D+
m d n Time Error Time Error Time Error

2 2 100 2 0.07 20 0.06 2 0.09
2 2 500 19 0.06 3432 0.06 4 0.06
2 2 1000 245 0.06 – – 15 0.06

4 5 100 0 0.05 – – 4 0.09
4 5 500 2 0.05 – – 18 0.06
4 5 1000 3 0.05 – – 66 0.06

5 10 100 1 0.04 – – 4 0.06
5 10 500 6 0.03 – – 14 0.04
5 10 1000 12 0.03 – – 47 0.03

10 20 100 2404 0.02 – – 3 0.02
10 20 500 – – – – 15 0.01
10 20 1000 – – – – 26 0.01

20 40 100 – – – – 2 0.01
20 40 500 – – – – 84 0.01
20 40 1000 – – – – 211 0.01

Table 1. Solution time (CPU seconds) and normalized estimation error of three formula-
tions averaged over 10 trials. Instances that did not solve to optimality under 3600 CPU
seconds are omitted when calculating average estimation error. Dashes indicate no instance
solved to optimality within 3600 CPU seconds in any trial.

5. Empirical Study: Randomizing Incentives in a Crowdwork Platform

In this section, we demonstrate our method by using it to investigate the effect of financial incentives

on work quality in an online labor platform. First, we conducted an experiment on a crowdwork

platform (Amazon Mechanical Turk) by randomly assigning incentive contracts to a pool of workers

completing the same task. We then estimate an agent model from the experimental data, which

allows us to characterize the link between incentives and quality and solve for an optimal incentive

contract.

5.1. Background: Incentives and quality on Amazon Mechanical Turk

Crowdwork platforms are used by businesses that require temporary labor to complete tasks that

are typically difficult for computers but simple for humans. Common tasks include audio tran-

scription, classification of images, and data entry. The largest and most well-known crowdwork

platform is Amazon’s Mechanical Turk (“mTurk”), which has been estimated to have 100,000

unique workers, with 2,000 active at any given time (Difallah et al. 2018).

The mTurk platform allows “requesters” to post tasks, along with a reward to be paid to the

worker upon successful completion. Workers can select the tasks they want to complete, typically

on a first-come, first-served basis. Requesters have discretion over whether to pay workers for

their submissions, and can deny payment if the worker’s submission is incomplete or low quality.
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Requesters can also provide bonuses to workers. Workers can be informed of the structure of the

bonus payment within the instructions for a task, which offers the requester considerable flexibility

in designing incentives.

The question of whether financial incentives improve quality of work in crowdwork platforms

has been addressed in multiple studies, with differing conclusions. Mason and Watts (2009) find

that incentives improve the quantity, but not quality of work; similarly, Yin et al. (2013) find that

the magnitude of the bonus does not affect quality. In contrast, Horton and Chilton (2010) and

Harris (2011) both find that quality can improve with worker pay. An important study in this line

of research is by Ho et al. (2015), who suggest that for tasks where quality plausibly depends on

worker effort (e.g., proofreading), incentives can improve quality.

With respect to experimental design, we underline two differences between our study and the

work cited above. First, instead of assigning workers to a finite number of treatments (e.g., bonus

or no bonus), we vary incentives in a continuous manner, meaning the parameters of the incentive

contract are randomly drawn for each worker. This design significantly complicates the imple-

mentation of the experiment on mTurk, but introduces useful variation for estimating our agent

model. Second, we examine how incentives affect the distribution of work quality, instead of average

quality.

5.2. Experimental setup

5.2.1. Task design. A major source of observable heterogeneity in the mTurk worker popu-

lation is location. Approximately 91% of workers are located in two countries: the US (75%) and

India (16%) (Difallah et al. 2018). We collected and analyzed data from both countries separately.

The experiment involved posting two types of tasks on mTurk. First, we posted a recruitment

task in which workers were paid $1.00 for agreeing to be notified of future tasks by email. We

recruited 250 workers from both the US and India using this task, for a total worker pool of 500.

The recruitment task in each country was made available for one day, and reached its maximum

number of submissions (250 for each location) within 3 hours of posting. Second, inspired by Ho

et al. (2015), we created a proofreading task by inserting 10 typos into a one-page, 500-word

excerpt from a newspaper article. The proofreading task required workers to report the line number

and correct spelling for each misspelled word in the article (e.g., “5:automobile”). We use a proof

reading task because it allows us to objectively measure the quality of each submission (percentage

of typos identified). After constructing the worker pool, we posted the proofreading task on mTurk

and notified each worker by email of the task’s availability. The task was available for 24 hours.



24

5.2.2. Incentive structure and randomization. We next describe how we randomized in-

centives among workers. The mTurk platform allows requesters to assign “qualification” criteria to

tasks, which only allows workers with the required qualifications to view and complete the task.

For example, a requester might assign a location or age-based qualification to a task if they wish

to target a specific worker population. Requesters can also create and assign custom qualifications

to workers. When conducting a randomized experiment, creating and randomly assigning qualifi-

cations to workers effectively allows the requester to construct multiple treatment groups, where

each qualification represents one treatment.

We use the qualification feature in mTurk to create exogenous variation in worker incentives.

We first created 500 unique qualifications, and assigned each qualification to a single worker in the

pool. We then created 500 tasks where each task was randomly assigned to a qualification. As a

result, for each of the 500 tasks, only a single worker in our pool was able to view and complete it.

The payment for the proofreading task consisted of two components: a base payment for finding

at least 25% of the typos in the document, and an additional bonus payment for finding at least

75% of typos. For each task (i.e., each worker in the pool), we drew base and bonus uniformly from

the interval [$0.10, $1.00], rounded to the nearest $0.01. We provided the details of the payment

structure upfront in the task instructions. Because workers were only able to view the task assigned

to them, workers could not observe the payment offered to others, and had no knowledge that

payments were randomized. Note that in the context of the proofreading task, worker output

corresponds to the fraction of typos corrected, which we also refer to as the task quality.

5.2.3. Submissions. We collected a total of 346 submissions, each from a unique mTurk

worker. Of these, 215 submissions were from US-based workers, and 131 were from India-based

workers. We analyze the data from US and India workers separately throughout our study. Figure

1 depicts the distribution of quality scores for workers in each location. Note that a large number

of submissions achieve a quality score of 0. Low-quality submissions are a well-known feature of

mTurk; because verifying responses manually for a large number of submissions is difficult, workers

may submit blank or low-quality responses in the hope of nevertheless receiving a payment (Ipeirotis

et al. 2010). Scores of 0 may also be due to submissions not being in the correct format, which we

specified as a condition for payment in the task instructions.

The mTurk platform provides timestamps for when a worker accepted and submitted a task.

The mean completion time (i.e., time between acceptance and submission) was 9.7 minutes, and

95% of workers submitted the task between 1 and 29 minutes after accepting it. Because mTurk

allows workers to accept tasks into a queue before working on them, the recorded completion time

is an upward-biased measurement of the actual time the worker spent on the task. As a result,
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Figure 1 Distribution of quality scores for submissions made by workers in the US and India.

completion time may be a poor proxy for true worker effort, because the requester cannot observe

how much time the task spent in the worker’s queue. We therefore treat effort as fully hidden, and

do not use completion time data in our study.

Based on each worker’s completion time, we estimated the average wage to be $14.50/hr for

our task (including the guaranteed $1.00 payment at recruitment). This is likely a conservative

estimate of the true average wage due to the queueing behavior described above.

5.3. Estimation and validation

Next, we describe the application of our estimation procedure to the experimental data. Putting

the results of the experiment in the format required by our estimator is straightforward. Recall

that each worker was eligible for three possible payments based on their submission quality: no

payment (if they found 0-25% of typos), a base payment (25%-75%), or both a base and bonus

payment (75-100%). In our framework, this corresponds to d= 3 possible performance levels for the

worker’s outcome ξi. Accordingly, the ith worker’s incentive contract ri has the components ri1 = 0,

ri2 = basei, and ri3 = basei+bonusi, where basei and bonusi are the randomly generated parameters

for that worker. For the PA-D+ algorithm, we set ρ= 0.5, S = 10 and α= 0.0001 throughout all

experiments.

5.3.1. Measuring goodness of fit. We require a goodness of fit metric for fitting and val-

idating the model. Recall that our estimation procedure generates a prediction of the outcome

distribution: Given an estimate π̂, a contract r, and action costs c, the model’s prediction of the

outcome distribution under r is π̂a(r), where a(r) is the agent’s optimal action under contract r.
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For ease of interpretation, we measure goodness of fit as the absolute error between the empirical

and predicted probability of a given outcome, averaged over all outcomes. Specifically, let (ri, ξi),

i= 1, . . . , n be the data we wish to measure our model fit against. As before, for each i, let yij = 1

if ξi = j (if outcome j is observed). Then the mean absolute error (MAE) is given by

MAE =
1

d

d∑
j=1

∣∣∣∣∣ 1n
n∑
i=1

(
π̂a(ri),j − yij

)∣∣∣∣∣ . (16)

5.3.2. Setting cost parameters. Two hyperparameters in our model are the number of

actions, m, and the action costs, c1, . . . , cm. We selected these parameters using a standard 10-fold

cross-validation procedure, using MAE to measure cross-validation errors. To avoid performing an

extremely large number of cross-validation iterations, we imposed additional structure by assuming

action costs were of the form ca = (a− 1) · δ, for a= 1, . . . ,m. We used cross-validation to jointly

select m and δ from the sets {2,3,4} and {0.02,0.05,0.1,0.2,0.5}, respectively (units of the latter

set are dollars). Results are presented in Table 2. Note that errors are relatively stable for all

values of δ when m = 2 or m = 3, whereas the model appears to overfit for m = 4. We select

(m,δ) = (3,0.1) for both the US and India datasets, resulting in the cost vector c = [0, 0.1, 0.2].

Lastly, for Algorithms 1 and 2, we set ρ= 0.5, S = 50, and α= 0.01, and use a Chi-squared test

for the hypothesis test step of Algorithm 2.

We note that our handling of action costs is fairly stylized, because they are treated as hyper-

parameters to be tuned prior to model fitting. Horton and Chilton (2010) estimates the median

reservation wage of mTurk workers to be $1.38/hr. Given that the median completion time for our

task was 8 minutes, $0.00–$0.20 appears to be a reasonable approximation for the range of effort

costs of an mTurk worker. We discuss costs in more detail in §5.5.

5.3.3. Bootstrapping. Given our moderately-sized data set (n= 215 and n= 131), we val-

idated our estimation procedure by bootstrapping. For each of 100 repetitions, we sampled n

δ
m 0.02 0.05 0.1 0.2 0.5

2 0.06 0.06 0.07 0.06 0.06
US 3 0.04 0.06 0.04 0.06 0.05

4 0.18 0.11 0.12 0.12 0.08

2 0.07 0.08 0.06 0.06 0.08
IN 3 0.07 0.05 0.06 0.06 0.08

4 0.15 0.08 0.06 0.11 0.09

Table 2. 10-fold cross-validation errors (MAE) for US and India groups, with varying
number of actions (m) and cost spacing (δ).
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observations with replacement, and estimated the model parameters from the sample using Algo-

rithm 2. For each repetition, we assessed model fit using two hypothesis tests: a Chi-squared (χ2)

test, which is appropriate in our setting because outcomes are discrete, and an exact test using

MAE as the test-statistic, where the sampling distribution is obtained through Monte Carlo sim-

ulation. In both hypothesis tests, the null hypothesis is that the empirical distribution of quality

outcomes in the out-of-bootstrap data is generated by the fitted model. Accordingly, we interpret

large p-values as indicating a good model fit.

Table 3 shows the distribution of test statistics and associated p-values over the 100 bootstrap

repetitions. Both tests produced comparable p-values within each worker group. Note that the

median p-value was above 0.1 for both groups, which suggests the model reasonably fits the joint

distribution over (r, ξ) in the majority of bootstrap iterations.

5th 25th Median 75th 95th

US
χ2 (p-value) 0.20 (0.90) 1.70 (0.43) 3.42 (0.18) 7.36 (0.03) 23.58 (0.00)
MAE (p-value) 0.02 (0.89) 0.04 (0.42) 0.07 (0.14) 0.10 (0.02) 0.15 (0.00)

IN
χ2 (p-value) 0.18 (0.91) 0.99 (0.61) 2.13 (0.34) 5.23 (0.07) 14.33 (0.00)
MAE (p-value) 0.02 (0.93) 0.05 (0.65) 0.09 (0.35) 0.14 (0.09) 0.19 (0.00)

Table 3. Percentiles of Chi-squared (ξ2) and MAE test statistics with associated p-values
over 100 bootstrap repetitions.

Table 4 presents the estimated values of π and standard errors for both worker groups. Each

3×3 section in the center of Table 4 corresponds to the estimated π matrix for the labelled worker

group, averaged over 100 bootstrap repetitions. For convenience, we refer to the outcome in which

the worker earns the bonus (ξi = 3) as the “bonus outcome”, and the probability that this outcome

is realized as the “bonus probability”. Note that the highest cost action (a = 3) has the highest

bonus probability in both worker groups, and that the bonus probability is lower in the India

worker group compared to the US group, for all actions.

Our estimation procedure treats each action a as a latent variable. The solution to the estimation

problem produces a clustering where each outcome is assumed to have been generated by one of

the m distributions (i.e., agent actions). As a result, for each bootstrap repetition, we can count

the number of observations that are assigned to each action by the estimator. The average number

of observations mapped to each action are reported in the final column of Table 4.
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Outcomes (j)
# Obs.

Actions (a) 1 2 3

1 0.46 (0.18) 0.34 (0.18) 0.20 (0.09) 19
US 2 0.30 (0.10) 0.42 (0.12) 0.28 (0.08) 27

3 0.20 (0.07) 0.43 (0.07) 0.37 (0.06) 169

1 0.57 (0.12) 0.34 (0.12) 0.09 (0.07) 36
IN 2 0.45 (0.09) 0.38 (0.11) 0.17 (0.06) 36

3 0.35 (0.07) 0.42 (0.07) 0.23 (0.06) 59

Table 4. Estimated values of π for both groups, with standard errors in parentheses.
The final column reports the number of in-bootstrap observations mapped to each action,
averaged over 100 bootstrap repetitions.

5.3.4. Predictive performance. Next, we evaluate the predictive performance of the esti-

mator. For each of the 100 bootstrap models, we compute the prediction error (given in (16))

attained by the fitted model on the out-of-bootstrap observations. We set S = 10, ρ = 0.5, and

α= 0.0001. To serve as performance benchmarks, we repeat the bootstrap procedure for standard

implementations of multinomial logistic regression (MLR) and classification trees (CT), both of

which also generate predictions of the outcome distribution for a given set of contracts.7 Figure 2

depicts the distribution over prediction errors for the three methods over the 100 bootstrap rep-

etitions. For the US data, the average MAE for PA-D+, MLR and CT is 0.059, 0.070 and 0.093,

respectively; for the India data, the average errors are 0.072, 0.086, and 0.112. In summary, Figure

2 confirms that the PA-D+ estimator produces sound predictions on the experimental mTurk data,

and is competitive with well-known benchmark methods. In §EC.2 of the electronic companion,

we further compare all three methods on several synthetic instances, and find that our estimator

continues to perform well.

7 Both benchmark methods are implemented using MATLAB’s Statistics and Machine Learning Toolbox using default
settings.
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Figure 2 Comparison of out-of-bootstrap prediction errors for PA-D+, multinomial logistic regression (MLR)

and classification trees (CT) on mTurk data (100 repetitions).

5.4. Impact of bonuses on quality

We now use the estimated model to examine the effect of varying the bonus payment on quality.

For a given incentive contract, we form a prediction of the outcome distribution by averaging over

the 100 bootstrapped models, which improves stability and reduces overfitting (Breiman 1996). Let

π̂1, . . . , π̂K be the estimates obtained from K bootstrap repetitions. The probability of observing

outcome j under the incentive contract r is then given by 1
K

∑K

k=1 π̂
k
ak(r),j

, where ak(r) is the

optimal action for contract r in the kth agent model. To isolate the influence of the bonus payment,

we fix the base payment to $0.10, vary the bonus payment between $0.10 and $1.00, and compute

the probability of each quality outcome under each bonus amount. We repeat for a base payment

of $1.00.

Figure 3 shows the results for both the US and India groups of workers. For a base payment of

$0.10 (Figure 3a and 3b), the bonus probability (i.e., probability that submission quality is above

75%) increases moderately for both groups as the bonus is increased from $0.10 to 1.00 (from 0.21

to 0.36 for the US group; from 0.09 to 0.17 for the India group). However, with a base payment

of $1.00 (Figure 3c and 3d), the effect of increasing the bonus payment from $0.10 to $1.00 is

dampened (bonus probability increases from 0.34 to 0.37 for the US group; 0.18 to 0.22 for the

India group). These results suggest that increasing the bonus payment can indeed increase quality,

but the effect is significantly diminished when the base payment is already high. A qualitatively

similar result can be obtained by fixing the bonus payment and varying the base payment (results

not shown).

We shed some light on the mechanics behind Figure 3. Because our predictions are based on the

average of 100 different agent models, for a fixed incentive contract, we can count the number of

models in which each action is taken. Further, note that if the bonus payment increases, an agent

may find it optimal to “switch” from a low-cost action to a high-cost action, thus increasing the
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(b) India, base = $0.10.
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(d) India, base = $1.00.

Figure 3 Effect of varying bonus payment on probability of each quality outcome (0-25%, 25-75%, 75-100%)

for US and India workers.

probability of realizing the high-quality outcome. The change in probabilities depicted in Figure 3

is the result of the underlying agent models jumping from one action to the next as the parameters

of the contract change.

Figure 4 shows the fraction of agent models that take each of the three actions as the bonus is

increased from $0.10 to $1.00. Note that the four panels in Figure 4 map to the four panels in Figure

3. As expected, when the base payment is $0.10, increasing the bonus amount from $0.10 to $1.00

is associated with agents switching away from the lowest cost action (a= 1) toward the higher cost

actions (a= 2 and a= 3). Moreover, the shift toward higher cost actions is more pronounced for

the US worker group, where the fraction of agents taking the highest cost action (a= 3) increases

from 0 to 0.69; for the India group, this fraction increases from 0 to 0.17. In parallel with Figure

3, when the base payment is $1.00, the fraction of agents taking the highest cost action (a = 3)

is higher overall, but the shift toward higher cost actions as the bonus is increased is muted. In

other words, the stability in selected actions shown in Figures 4c and 4d explains the stability in

outcome probabilities seen in Figures 3c and 3d. We emphasize here that Figure 4 is intended to
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Figure 4 Effect of bonus payment on optimal agent actions in 100 bootstrapped models.

illustrate the mechanics behind the predictions in Figure 3, and is not necessarily a depiction of

worker behavior.

5.5. Solving for an optimal incentive contract

An advantage of our model specification is that it leads to an optimal contracting problem that

is highly tractable (see §EC.1 of the electronic companion for details). To illustrate this in the

context of our mTurk study, we consider the simple problem of maximizing the bonus probability

(i.e., outcome {ξ = 3}) subject to a budget constraint on the expected payment:

maximize
r

π̂â(r),3 (17a)

subject to â(r) = argmax
a∈A

r>π̂a− ca, (17b)

r>π̂â(r) ≤ Γ, (17c)

r≥ 0. (17d)

The formulation above is a special case of the general optimal contracting problem presented in

§EC.1 of the electronic companion, and can be solved exactly by solving |A| linear programs. An
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Figure 5 Frontier of optimal bonus probabilities under varying budget parameter Γ.

important consequence of the tractability of the optimal contracting problem (17) is that we can

easily characterize the performance of the optimal contracts as the budget parameter Γ varies. To

do so, we solve (17) for each Γ ∈ {0.05,0.1, . . . ,1} (for each of the 100 bootstrap estimates), and

compute the average bonus probability under each value of Γ.

Figure 5 shows the resulting frontiers for both the US and India worker data. Because the curves

are obtained by solving the optimal contracting problem (17), they represent estimates of the

maximum attainable performance for both worker groups over the entire class of contracts used in

the experiment. The value of the budget parameter Γ can be interpreted as the expected payment

to the agent under the corresponding optimal contract. Our main finding is that higher payments

increase quality modestly: increasing the expected payment from $0.10 to $1.00 increases the bonus

probability under the optimal contract by 0.08–0.12, depending on the worker group. However,

the most striking observation is that returns to quality diminish at fairly low payment levels, with

quality improvements leveling off around $0.30 and $0.60 for the US and India groups, respectively

(we discuss possible explanations in §5.7).

Figure 5 also clearly depicts the difference in the performance of optimal contracts between the

US and India worker groups. For example, for the US group, attaining a bonus probability of 0.30

requires an expected payment of at least $0.20; for the India group, a bonus probability of 0.30 is

not attainable through higher payments alone. It can also be observed that the bonus probability

is approximately 0.10–0.15 higher among US workers across all payment levels.

5.6. Experimental validation of contract performance

To validate the predicted performance of the optimal contracts shown in Figure 5, we conducted

six follow-up experiments on mTurk. First, for each of the 100 bootstrap estimates π̂1, . . . , π̂K , we

solved the optimal contracting problem (17) for Γ ∈ {0.25,0.50,0.75}, which corresponds to three

different points on the frontiers in Figure 5. We then computed the optimal contract by taking the
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Figure 6 Empirical bonus probabilities and 95% prediction intervals of six contracts implemented on mTurk.

component-wise average of the 100 solutions to (17). This produced six different testable contracts

(i.e., combinations of the base and bonus parameters), which are shown in Table 5. We implemented

each contract on mTurk by recruiting a new pool of 600 unique workers (using the same approach

described in §5.2), and assigning 100 workers to each of the six contracts. Table 5 summarizes the

results from these experiments, including the empirical bonus probability for each contract (i.e.,

the fraction of submissions with quality above 75%). In Figure 6, we plot the empirical bonus

probabilities along with the 95% prediction intervals obtained from the bootstrap.

Figure 6 shows that for each of the six experimentally tested contracts, the empirical bonus

probability sits comfortably inside its corresponding prediction interval, and is often close to the

midpoint of the interval. In general, the prediction intervals are wide, which is unsurprising given

that many other factors likely influence submission quality beyond the payment amount, including

unobserved worker attributes. Further, validating the predictions from any model through experi-

ments is challenging in general; because the worker population on mTurk is not temporally static

(Difallah et al. 2018), the worker population in the validation experiments may be different from

the initial experiments used to estimate the model. Nevertheless, our results in Figure 6 suggest

that the estimator can reasonably predict experimental outcomes under a given incentive contract.
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Budget (Γ) Base Bonus Submissions > 75% Empirical Bonus Probability

US
0.25 0.16 0.42 20 5 0.20
0.50 0.23 0.47 52 17 0.33
0.75 0.41 0.78 39 14 0.36

IN
0.25 0.11 0.31 73 9 0.12
0.50 0.25 0.42 79 10 0.13
0.75 0.58 0.77 71 8 0.11

Table 5. Optimal incentive contracts under three different values of Γ and associated
results from mTurk experiments.

5.7. Discussion

Our results suggest larger incentives can increase quality on crowdwork platforms, corroborating

the results of Ho et al. (2015). While similar results are reported in the literature, we have taken a

complementary approach by characterizing worker performance over a class of incentive contracts.

Further, the tractability of the optimal contracting problem under our agent model allows us to

estimate performance under an optimal contract. In particular, as summarized in Figure 5, we find

that increasing the expected worker payment by about $1 increases the probability that a worker

crosses the bonus threshold by 0.08–0.12, depending on the worker’s location. Most notably, we

find diminishing returns to quality at relatively low payments in both worker groups, which may

help explain why requesters tend to set low wages on mTurk (Hara et al. 2018).

We also observe that quality can depend strongly on the worker’s location. In particular, as seen

in Figure 5, the bonus probability for the India group at an expected payment $1.00 is comparable

to the US group at $0.10. This result aligns with a finding by Shaw et al. (2011), who observe that

quality on mTurk is much more strongly associated with worker location than financial incentives.

While we have only focused on worker location in this study, our approach can be readily extended

to other worker attributes, provided sufficient data is available.

We highlight some limitations of our study and note directions for future work. First, we have

treated agent costs as hyperparameters by tuning them through cross-validation. This makes the

costs used in our model a rough approximation of actual worker costs, and may limit the inter-

pretability of the resulting agent model. Our agent model also does not capture many of the worker

dynamics present in crowdwork platforms. Horton and Chilton (2010) point out that mTurk worker

output appears to deviate from what would be predicted by simple, rational agent models, which

applies to our model as well. Lastly, an important aspect of crowdwork not addressed here is worker

welfare. In particular, mTurk has been widely criticized for low worker pay, which is often far below

the US minimum wage (Hara et al. 2018). While we did not address worker welfare in this paper,

our modeling framework can also be used to characterize welfare over a class of incentive contracts,
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and allows for welfare considerations to be explicitly incorporated into the optimal contracting

problem (e.g., by imposing constraints on agent utility). Investigating the trade-off between worker

welfare and quality in crowdwork may be a fruitful direction for future work.

6. Conclusion

We proposed an approach for estimating parameters that govern agent production in a moral-

hazard principal-agent model. First, we presented an estimator for a non-parametric agent model,

and showed it to be statistically consistent. To avoid computational drawbacks of solving the

estimator exactly, we proposed an approximate estimator based on a restricted parameter set, and

characterized the approximation error both asymptotically and in a finite-sample setting. To solve

the restricted estimator, we developed a novel column generation technique that uses hypothesis

testing to select variables, which we showed preserves consistency. Numerical results show that the

approximation scheme and solution technique produce accurate estimates in a computationally

efficient manner. Lastly, we applied our estimator to data from a randomized experiment on a

crowdwork platform to demonstrate how our method can be used to characterize performance over

a class of incentive contracts and identify optimal incentives from the estimated model.

We conclude by noting some possible directions for future work. Our estimation procedure is built

upon a general but simple moral-hazard agent model; it may be useful to extend our approach to

accommodate other common features of principal-agent models, such as unobserved heterogeneity

and risk aversion. There may also be fertile ground in generalizing our statistical column generation

algorithm to other integer programming problems. In particular, our approach may be relevant to

other estimation problems where the parameter space is a very large set of discrete distributions.

Lastly, estimating an agent model from data may be valuable for investigating questions related

to worker welfare, which is an issue of increasing prominence in online labor platforms.
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Electronic Companion for “Estimation of a Non-Parametric
Principal-Agent Model with Hidden Actions”

EC.1. Identifying an Optimal Incentive Contract

A natural question is whether it is possible to use our estimated model to identify an optimal

incentive contract from the set R. Here, we establish an important property of our model: our

agent-based method for estimating the mapping from contracts to outcomes yields an optimal

contracting formulation that is simple and tractable. This tractability is a direct consequence of

our specification of the agent model, and is not guaranteed if alternative methods are used to

estimate the mapping from contracts to outcomes.

Let ζj(r) be the utility (e.g., of a principal) under outcome {ξ = j} and contract r, and suppose we

are interested in identifying a contract r∈R that maximizes expected utility: U(r) =
∑

j∈J Pr(ξ =

j|r)ζj(r). As we have assumed throughout, the distribution Pr(ξ = j|r) may be unknown in practice,

which implies the utility function U(r) is also unknown. However, given data on past contracts and

outcomes, a reasonable approximation is to first estimate P̂r(ξ = j|r) for all r∈R, which produces

an estimate of U :

Û(r) =
∑
j∈J

P̂r(ξ = j|r)ζj(r).

Then, a sensible approximation is to find a contract in R that maximizes the estimated expected

utility:

(OC) maximize
r∈R

Û(r).

Next, suppose ζj(r) is convex in r, and let R be a convex set. Then, the tractability of the optimal

contracting problem (OC) depends critically on the expression for P̂r(ξ = j|r), which in turn is

determined by the method used to estimate it.

A useful structural property of our approach is that the expression for P̂r(ξ = j|r) makes problem

OC quite straightforward. Specifically, within our modeling framework, we have P̂r(ξ = j|r) = π̂â(r),j,

where â(r)∈ argmaxa∈A

{∑
j∈J π̂ajrj − ca

}
. Then, for a given estimate π̂, we can write the optimal

contracting problem as:

maximize
r

π̂â(r),jζj(r) (EC.1a)

(OC(π̂)) subject to â(r)∈ argmaxa∈A
∑
j∈J

π̂ajrj − ca, (EC.1b)

r∈R. (EC.1c)

This formulation leads to the following result, which we present without proof:
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Lemma EC.1. If R is a convex set and ζj(r) is convex in r, then an optimal solution to OC(π̂)

can be obtained by solving |A| convex problems.

To see why the lemma holds, consider the following formulation for a fixed action a:

maximize
r

∑
j∈J

π̂ajζj(r) (EC.2a)

subject to
∑
j∈J

rjπ̂aj − ca ≥
∑
j∈J

rjπ̂bj − cb, b∈A, (EC.2b)

r∈R. (EC.2c)

The subproblem (EC.2) finds a utility-maximizing contract from Ra(π̂) – the subset of R such that

action a is optimal for the agent under π̂. Specifically, the objective (EC.2a) gives the expected

payoff under contract r and action a, the constraint (EC.2b) restricts the contracts r to those

that make action a optimal for the agent, and constraint (EC.2c) restricts r to the set R. The

subproblem (EC.2) is clearly convex if R is a convex set and ζj(r) is convex in r. Therefore, OC(π̂)

can be easily solved by solving the subproblem (EC.2) once for each action a∈A, and selecting the

action and corresponding contract that maximizes (EC.2a). Note that (EC.2) may be infeasible

if Ra(π̂) is empty (i.e., there exists an action such that no contract makes it optimal), but that

at least one Ra(π̂) must be non-empty, so it is always possible to solve OC(π̂). In summary, once

equipped with an estimate π̂, our model allows us to easily optimize over the set R to identify an

optimal contract.

As a point of comparison, note that the general form optimal contracting problem OC may not

be straightforward to solve if an alternative method is used to estimate P̂r(ξ = j|r). For example,

in the context of multinomial logistic regression (where the contract vector r are the independent

variables and the outcomes j ∈ J are classes), P̂r(ξ = j|r) is given by the logit function, which

is non-convex in r, making OC non-trivial to solve. Similarly, in non-parametric classification

methods such as classification trees, there may not exist a closed form expression for P̂r(ξ = j|r),

in which case solving OC is far from straightforward.

EC.2. Additional Computational Results
EC.2.1. Prediction Error Comparison with Multinomial Logistic Regression and

Classification Trees

In this section, we further examine the predictive performance of the estimator using synthetic

data. In particular, we assess the predictive performance of PA-D+ and the benchmark methods

under different specifications of the underlying data generation process. The setup is as follows: For

each observation i∈ I, we construct ri by drawing d values from the standard uniform distribution
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and sorting them in ascending order, so that rij ≤ rij+1 for j = 1, . . . , d−1, which reflects the notion

that higher outcomes should correspond to higher payments. For PA-D+, action costs are given by

ca = a/m for a= 1, . . . ,m. We then simulate the outcome data from discrete distributions of the

form

Pr(ξ = j|r) =
gj(r)∑d

k=1 gk(r)
,

where gj(r), j ∈ J are functions that determine the outcome distribution under a contract r.

We test different underlying models by considering gj(r) = rj, gj(r) =
√
rj and gj(r) = (1 + r2

j )

(a natural interpretation is that we are testing predictive performance under different “ground-

truth” models). For each of these three models, we consider six problem sizes: (m,d,n) ∈

{(2,2,100), (2,2,1000), (4,5,100), (4,5,1000), (5,10,100), (5,10,1000)}. For each of these six in-

stances, we again fit all three models to a bootstrap sample of size n, and measure predictive

performance on the out-of-bootstrap sample, for 100 repetitions. The prediction error is measured

using the mean absolute error (MAE) given in (16). In a second set of experiments, we add a noise

term ε to gj(r), where ε is drawn independently from the standard uniform distribution for each

observation i∈ I.

Tables 6 and 7 show the average prediction errors over 100 bootstrap repetitions with and without

the additional noise term, respectively. Minimum prediction errors are shown in bold. Table 6 shows

that all three methods have comparable performance when there is no noise term. In contrast,

Table 7 shows that when the noise term is included to generate the outcome data, the predictive

performance of MLR degrades considerably, whereas PA-D+ performs well across all instances.

Intuitively, this difference in performance is due to the non-parametric nature of PA-D+, which

makes predictions based on empirical distributions found within each bootstrap sample, allowing

it to fit the data well. We also find that classification trees are competitive in several instances in

Table 7, which is unsurprising given their flexibility.

Interestingly, PA-D+ shows little evidence of overfitting. This may be because the estimator

searches over the restricted parameter set Π̃, which is constructed from the data, instead of the

full space of possible distributions Π. While this restriction on the parameter space is motivated by

computational tractability, it may also help the model avoid overfitting by forcing the estimator to

only choose among a finite set of empirical distributions that appear in the data (see Algorithm 2).

Lastly, it is worth noting that all three methods may be tuned further; for example, one can adjust

the maximum number of splits in the classification trees, or adjust the parameters ρ, α and S in

PA-D+; doing so may produce different results. Nonetheless, given that we do not exhaustively

tune PA-D+ to the data, Tables 6 and 7 suggest that PA-D+ performs favorably compared to

well-known prediction methods, and is robust to the underlying data generation process.
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gj(r) m d n PA-D+ MLR CT

rj

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.03 0.02
4 5 100 0.07 0.08 0.07
4 5 1000 0.02 0.03 0.02
5 10 100 0.04 0.06 0.05
5 10 1000 0.02 0.02 0.02

√
rj

2 2 100 0.09 0.03 0.11
2 2 1000 0.03 0.03 0.03
4 5 100 0.06 0.06 0.06
4 5 1000 0.02 0.02 0.02
5 10 100 0.04 0.05 0.05
5 10 1000 0.02 0.02 0.01

(1 + rj)
2

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.02 0.03
4 5 100 0.07 0.08 0.07
4 5 1000 0.02 0.03 0.02
5 10 100 0.05 0.05 0.06
5 10 1000 0.02 0.02 0.02

Table 6. Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression
(MLR) and classification trees (CT) under varying data generation processes (without noise),
averaged over 100 bootstrap repetitions. Minimum errors are bolded.

gj(r) m d n PA-D+ MLR CT

rj + ε

2 2 100 0.07 0.20 0.25
2 2 1000 0.02 0.34 0.22
4 5 100 0.06 0.28 0.10
4 5 1000 0.02 0.22 0.02
5 10 100 0.04 0.16 0.05
5 10 1000 0.02 0.13 0.02

√
rj + ε

2 2 100 0.11 0.33 0.32
2 2 1000 0.03 0.35 0.20
4 5 100 0.07 0.27 0.08
4 5 1000 0.02 0.22 0.02
5 10 100 0.05 0.15 0.06
5 10 1000 0.02 0.13 0.02

(1 + rj)
2 + ε

2 2 100 0.10 0.19 0.31
2 2 1000 0.03 0.23 0.20
4 5 100 0.06 0.30 0.11
4 5 1000 0.02 0.25 0.03
5 10 100 0.05 0.15 0.05
5 10 1000 0.02 0.13 0.02

Table 7. Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression
(MLR) and classification trees (CT) under varying data generation processes (with noise),
averaged over 100 bootstrap repetitions. Minimum errors are bolded.
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EC.2.2. Solution Time Comparison with Maximum Likelihood Estimation

Naturally, one might ask whether π0 can also be estimated through a maximum likelihood esti-

mation (MLE) approach. Here, we present numerical examples to show that an MLE approach

may not be tractable for the non-parametric agent model that we study in this paper, due to the

potentially large search space represented by the parameter set Π and the nonconvexity of the

likelihood function.

Note that for each i∈ I, ξi is the outcome in J that was observed under ri. Then, based on the

agent model (1), the log-likelihood of seeing the data (ri, ξi), i∈ I under the parameter π is

L̃(π) =
∑
i∈I

log(πa,ξi), where a= argmax
a∈A

{∑
j∈J

πajr
i
j − ca

}
. (EC.3)

One challenge with maximizing the log-likelihood function L̃(π) is that it is discontinuous at values

of π where two or more actions are optimal. Intuitively, this is because for these values of π, a

small change in the parameter π can make the agent’s optimal action “jump” from one action

to another, which leads to a discontinuity in L̃(π). Therefore, non-linear optimization techniques

that require the likelihood function to be continuous and differentiable cannot be used to maximize

L̃(π).

An intuitive approach to optimizing L̃(π) that does not require differentiability of L̃(π) is to

perform an exhaustive grid search over the parameter set Π. We set up the following numerical

experiment to test the viability of this method. First, we randomly generate problem data using

the process described in §4.4.1, where (m,d) ∈ {(2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4)}, and

n∈ {100,500,1000}. We then discretize the parameter set Π in increments of 0.1 for each element

(a, j) in the matrix π. For example, in the instances where d= 2, we search over the set
∏
a∈APgrid,

where Pgrid = {(0,1), (0.1,0.9), (0.2,0.8), . . . , (0.9,0.1), (1,0)}. We then evaluate the log-likelihood

function L̃(π) for each value of π in the grid, and set the estimate as the solution that yields the

largest value of L̃(π). We set a time limit of 3600 CPU seconds for each instance.

Table 8 summarizes the results of this search procedure, averaged over 10 repetitions per problem

size. The results indicate that for even small instances, an exhaustive search may require up to

one CPU hour, making this method impractical for larger problem sizes. This is an unsurprising

result, given that the number of solutions to be evaluated grows exponentially in the number of

actions, m, and the number of outcomes, d. It can be observed from the results in Table 1 that

our estimation procedure obtains comparable estimation errors in approximately 1 CPU minute

for similar problem sizes. We note here that other heuristics for searching over Π (e.g. genetic

algorithms) may be more fruitful than a simple grid search, although they will also be subject to

a search space where the number of grid points grows exponentially in m and d.
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MLE
m d n Time Error

2 2 100 0 0.11
2 2 500 0 0.05
2 2 1000 1 0.04

2 3 100 8 0.07
2 3 500 14 0.05
2 3 1000 22 0.04

2 4 100 144 0.07
2 4 500 264 0.05
2 4 1000 424 0.05

2 5 100 1751 0.08
2 5 500 3301 0.05
2 5 1000 - -

3 2 100 3 0.09
3 2 500 5 0.08
3 2 1000 7 0.08

3 3 100 488 0.08
3 3 500 931 0.07
3 3 1000 1471 0.07

3 4 100 - -
3 4 500 - -
3 4 1000 - -

Table 8. Solution time (CPU seconds) and normalized estimation error of MLE via grid search,

averaged over 10 trials. Number of actions, outcomes and sample size are denoted by m, d, and n,

respectively. Instances that did not solve to optimality under 3600 CPU seconds are omitted when

calculating average estimation error. Dashes indicate no instance solved to optimality within 3600

CPU seconds in any trial.

EC.3. Agent Heterogeneity

The estimation procedure developed in §2 and §3 can be naturally extended to accommodate

heterogeneous agents. We model heterogeneity non-parametrically by assuming each agent has a

categorical type that is observable from the data, and allow an agent’s action costs and outcome

distributions to depend on the agent’s type.

In this section, we show that our main estimator PA can be modified to incorporate agent

heterogeneity, and that consistent estimation remains possible in the heterogeneous setting. In

particular, we present an analogous result to Theorem 1 for an estimator that accounts for agent

heterogeneity. Note that similar results to Proposition 2 and Theorem 3 can also be obtained under

agent heterogeneity, by applying similar arguments. For conciseness, we will only formally present

an analogue to Theorem 1 under agent heterogeneity.



e-companion to Kaynar and Siddiq: Estimation of a Non-Parametric Principal-Agent Model ec7

We also show how a priori information about the relative efficiency of different agent types can

be incorporated into our estimator. Note that because agent types are observable, an intuitive

procedure is to simply segment the data according to agent type, and then apply the base esti-

mator PA-D+ to each segment separately. However, if additional information about the relative

performance of different agent types is available, then one might expect an estimator that pools the

data across all agent types to outperform a naive application of PA-D+ to each type separately.

We present numerical results that show that incorporating this additional efficiency information

can indeed improve estimation accuracy when data is limited, but can degrade accuracy when data

is abundant, due to our approximation scheme.

The extension of our model to heterogeneous agents is intuitive; therefore, the development in

this section will closely follow §2 and §3. In §EC.3.1, we present the estimator formulation in the

presence of agent heterogeneity, and discuss how a priori information about the relative efficiency

of different agent types can be embedded in the parameter set Π. In §EC.3.2, we present a corollary

to Theorem 1 that shows consistent estimation is possible under agent heterogeneity. In §EC.3.3,

we present the optimization model and column generation algorithm used to produce an analogue

to the base estimator PA-D+, and provide numerical examples. We present the proof of our main

result in §B.4.

EC.3.1. Estimator

Suppose that in addition to observing the contract ri and outcome ξi, we also observe the agent’s

type, θi. Agent types are categorical and indexed by the set K. Thus, each historical observation

consists of the triple (ri, ξi, θi). With a slight abuse of notation, we define the agent model using

the parameter π ∈Rm×d×|K|+ , where πkaj is the probability that action a leads to outcome j when

taken by a type k agent. As before, we let π0 denote the true model parameter to be estimated,

where Π⊆ Rm×d×|K|+ is the parameter set and π0 ∈Π. Next, let cka be the cost of taking action a

for a type k agent, and let ck denote a type k agent’s cost vector. We assume all agents have the

same outcome set, A.8 Let Ak(r
i,π) = argmax

a∈A
{
∑

j∈J π
k
ajr

i
j − cka} denote the set of optimal actions

for a type k agent under the contract ri, and define Ik = {i∈ I|θi = k} as the subset of observations

where the agent is type k. The loss function Lkn(π) for a type k agent is then

Lkn(π) = minimize
x,η,ω

‖π−ω‖1 (EC.4a)

subject to xi ∈Ak(ri,π), i∈ Ik, (EC.4b)

ωaj =
1

|{i∈ Ik|xi = a}|
∑

i∈{i∈Ik|xi=a}

yij, a∈A, j ∈ J. (EC.4c)

8 The assumption that all agent types share the same set of actions is without loss of generality; an action a for agent
k, we may assume cka = ∞.
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Note that the loss function (EC.4) is similar to the loss function provided for a single agent type

in §2.2, but is defined over the subset of observations Ik instead of I. The estimate of π0 is then

attained at a minimizer of the sum of loss functions over Π:

(PA-H) π̂n = argmin
π∈Π

∑
k∈K

Lkn(π).

Note that PA-H is not necessarily equivalent to solving PA for each agent type separately, because

the parameter set Π may link estimation problem across agent types based on a priori information.

In particular, if we have additional information about the relative performance of different agent

types, then pooling the data and solving PA-H effectively allows us to use data generated by one

agent type to estimate the parameters for another. Next, we provide two examples of how a priori

information can be incorporated into the model.

EC.3.1.1. Outcome efficiency. It is common in incentive problems for agents to be hetero-

geneous with respect to some notion of efficiency (Laffont and Martimort 2009). Here we illustrate

how different definitions of agent efficiency can be captured within our framework. Without loss of

generality, assume outcomes are ordered based on the preferences of the principal, so that outcome

j + 1 is preferred to outcome j, for j = 1, . . . , d− 1. Suppose also that all agents share the same

action costs (c1 = c2 = . . . ,c|K|). Now suppose that the outcome distributions πka are unknown,

except for the following (strict) first-order stochastic dominance relation: For any action a and

outcome j, a type k+1 agent is more likely to obtain an outcome at least as good as j when taking

action a as a type k agent. Here, agent k+ 1 can be said to be more efficient than agent k, in the

sense that agent k+ 1 is more productive under each possible action. This ordering between agent

types can be captured by the following parameter set:

Π =

{
π ∈Qπ

∣∣∣∣∣π≥ 0,
∑
j∈J

πkaj = 1 for a∈A,k ∈K

}
, (EC.5)

where

Qπ =

{
π

∣∣∣∣∣
d∑
h=j

πkah + ε≤
d∑
h=j

πk+1
ah , for a∈ {1,2, . . . ,m− 1}, j ∈ J,k ∈ {1,2, . . . , |K| − 1}

}
, (EC.6)

where ε > 0 is a small constant. The inequalities given in (EC.6) restrict the parameter set so

that the outcome distribution is stochastically dominated when taken by a higher type (i.e., more

efficient) agent. For an example where this kind of ordering may arise, consider an employee bonus

program where the action set A corresponds to employee effort levels, and employees are one of

two types: inexperienced (k= 1) or experienced (k= 2). Here, the outcome distribution πka may be

interpreted as a type k agent’s productivity under action a. If the productivity of both agent types
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is unknown, but there is other evidence to suggest that experienced agents are more productive

than inexperienced agents (all else equal), then we might use a parameter set like the one given in

(EC.5) to simultaneously estimate π1 and π2, which can be interpreted as the agents’ production

functions.

EC.3.1.2. Cost efficiency. Agents may also be heterogeneous with respect to action costs.

Naturally, we can model heterogeneity in agent costs by assuming all agents have the same outcome

distributions (π1 = π2 = . . .= π|K|), and assuming that action costs decrease in agent type: c1
a ≥

c2
a ≥ . . .≥ c|K|a , for all a ∈A. A more general and richer model for heterogeneity in action costs is

the following:

Qπ =

{
π

∣∣∣∣∣
d∑
h=j

πk+1
ah ≤

d∑
h=j

πkbh only if ck+1
b ≥ cka

}
. (EC.7)

The parameter set in (EC.7) implies that high-type agents are more cost efficient than low-type

agents in the following sense: an action b taken by a low-type agent can only (weakly) stochastically

dominate (i.e. be more productive than) an action a of a high-type agent if it is more costly for

the low-type agent. In other words, for the low-type agent, there exists no action that is both less

costly and more productive than any action of a high-type agent.

EC.3.1.3. Limiting model complexity. One potential challenge associated with our ap-

proach to incorporating agent heterogeneity is that it increases the number of parameters to be

estimated; for instance, in the two examples above, the number of free parameters in the model is

on the order of m · d · |K|. As with any model fitting problems, if the amount of available data is

limited relative to the number of free parameters, there is a risk of the model overfitting the data,

which leads to poor out-of-sample performance. A typical approach to preventing overfitting is to

limit or penalize model complexity (i.e., through regularization). Within our framework, model

complexity can be limited by imposing additional constraints on the parameter set Π. In particular,

consider the following parameter set:

Πreg =

π ∈Π

∣∣∣∣∣ ∑
(a,b)∈A×A

∑
(k,k′)∈K×K

1{πka 6=πk
′

b } ≤ `

 , (EC.8)

where ` is an integer and `≤m · |K|. The set Πreg may be interpreted as a regularized counterpart

to Π. In words, Πreg permits at most ` unique distributions to be used by the estimator PA-H in

the construction of the matrices π1,π2, . . . ,π|K|. Note that this regularization constraint can easily

be imposed in the optimization formulation for PA-H (given in EC.3.3 below) through constraints

on the binary assignment variables w.
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EC.3.2. Statistical consistency

Next, we show that the consistent estimation is possible under agent heterogeneity as well. Similar

to (5), it will be helpful to define

Rk
a(π) =

{
r∈R

∣∣∣∣a∈ argmax
a∈A

∑
j∈J

πkajrj − cka

}
.

Next, we present two assumptions that parallel Assumptions 1 and 2.

Assumption EC.1 (Data). The data (ri, ξi, θi) are independent samples of random variables

(r, ξ, θ), where (i) (r, ξ, θ) is jointly distributed with support R × J × K, (ii) r has continuous

marginal density function f(r), (iii) ξ has conditional mass function π0k
aj = Pr(ξ = j|r ∈ Rk

a(π)),

and (iv) for any π ∈Π, Pr(r∈Rk
a(π))> 0 for all a∈A, j ∈ J , and k ∈K.

Assumption EC.2 (Identifiability). For every π ∈Π such that π 6=π0, there exists an (a, j, k)

such that

πkaj 6=
∑
b∈A

π0k
bj ·Pr(r∈Rb(π0k)|r∈Ra(πk)).

We can now present a corollary to Theorem 1, which establishes that PA-H provides consistent

estimates.

Corollary EC.1. Let Assumption EC.1 hold. Then π̂n −→π0 if and only if Assumption EC.2

holds.

Corollary EC.1 confirms that the estimates produced by PA-H converge to the true model param-

eters. Next, we show how the integer programming formulation PA-D and the statistical column

generation algorithm given in §4.3 can be extended to incorporate agent heterogeneity.

EC.3.3. Optimization, solution algorithm, and numerical examples

Similar to the single type estimator PA, we can formulate a proxy estimator for PA-H, represent

this proxy estimator exactly as a mixed-integer formulation, and then obtain an integer program-

ming formulation of a restricted estimator that limits each distribution πka to a set of candidate

distributions V . Because this development follows in a parallel manner to §3, we skip directly to

the formulation of the restricted estimator.

Let w, x and φ be binary variables with the following interpretations, parallel to §4.1: wkas = 1 if

the candidate distribution vs is assigned to distribution πka , xis = 1 if the action that candidate dis-

tribution vs is assigned to is optimal under contract ri, and φias = 1 if vs is assigned to distribution

πka and action a is optimal under ri and πk. Let zk ∈Rd×S+ be auxiliary variables. Then, analogous

to PA-D, we can formulate the restricted estimator as the following optimization problem:
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minimize
π,w,x,z,φ

∑
k∈K

∑
s∈S

∑
j∈J

zksj (EC.9a)

subject to zksj ≥
1

n

∑
i∈Ik

(ξij − vsj)xis, j ∈ J, s∈ S,k ∈K, (EC.9b)

zksj ≥
1

n

∑
i∈Ik

(vsj − ξij)xis, j ∈ J, s∈ S,k ∈K, (EC.9c)

∑
b∈A

∑
s∈S

(∑
j∈J

vsjr
i
j − ckb

)
φibs ≥

(∑
j∈J

vs′jr
i
j − cka

)
wkas′ , i∈ Ik, a∈A,s′ ∈ S,k ∈K,

(EC.9d)

(PA-DH)
∑
s∈S

wkas = 1, a∈A,k ∈K, (EC.9e)∑
a∈A

∑
s∈S

φias = 1, i∈ I, (EC.9f)

xis =
∑
a∈A

φias, i∈ I, s∈ S, (EC.9g)

φias ≤wkas, i∈ Ik, a∈A,s∈ S,k ∈K, (EC.9h)

πkaj =
∑
s∈S

wkasvsj, a∈A,j ∈ J,k ∈K, (EC.9i)

xis ∈ {0,1}, i∈ I, s∈ S, (EC.9j)

wkas ∈ {0,1}, a∈A,s∈ S,k ∈K, (EC.9k)

φias ∈ {0,1}, i∈ I, a∈A,s∈ S, (EC.9l)

π ∈Qπ. (EC.9m)

The candidate distributions in the formulation above can be constructed in an analogous way to

Algorithm 1. The main difference is that we first segment the data according to agent type, which

is the key step in obtaining “good” candidate distributions. Recall that the intuition behind the

sample-based construction of candidate distributions (given in Algorithm 1) is to use the data to

approximate the true outcome distributions, π0
a, a ∈ A. Because each cluster in Algorithm 1 is

constructed to contain similar contracts, we anticipate that for some clusters, all contracts that

are contained within it induce the same (hidden) action from the agent. If, for a given cluster,

all contracts lead to the same hidden action, then the empirical mass function over outcomes (i.e.

the candidate distribution) should be informative about the outcome distribution π0
a for some

unknown a ∈A. In the case where agents are heterogeneous, segmenting the data by agent types

before constructing the candidate distributions helps to preserve this information. A summary is

given in Algorithm 3.

Next, we discuss how to use the statistical column generation algorithm to return a sufficiently

“representative” subset of the candidate distributions in the presence of agent heterogeneity. Recall



ec12 e-companion to Kaynar and Siddiq: Estimation of a Non-Parametric Principal-Agent Model

Algorithm 3: Construction of candidate distributions with agent heterogeneity

Input: Data (ri, ξi, θi), i∈ I, parameter, ρ> 0.
1. For each k ∈K, randomly sample a subset Sk from Ik.
2. for s∈ Sk, k ∈K:

Bs = {r∈R|‖rs− r‖2 ≤ ρ},
Is = {i∈ Ik|ri ∈Bs}.
for j ∈ J :

vsj = 1
|Is|

∑
i∈Is y

i
j.

Output: Candidate distributions V = {vs for s∈ Sk, k ∈K}.

that the statistical column generation algorithm terminates when there is no candidate distribution

in the set of omitted distributions V − that is statistically different from every distribution in

V +. We use the same argument to build the corresponding algorithm in the presence of agent

heterogeneity. We first define a vector ψk
s ∈Zd+, where the jth entry is the frequency of outcome j

in the candidate distribution vs for s∈ Sk, obtained in Algorithm 3. Then using the test functions

introduced in §4.3.1, we identify a subset of candidate distributions V + and solve PA-HD over V +

instead of V . Algorithm 4 provides an overview. Note that when there is no additional structure

that links the agent types, then Algorithm 3 and 4 is equivalent to running Algorithm 1 and 2 for

each agent type separately.

Algorithm 4: Statistical column generation (PA-DH+)

Input: Data (ri, ξi, θi), i∈ I, candidate distributions V produced by Algorithm 3,
significance level α> 0.

Initialize: Set t= 0. Select any s∈ Sk, k ∈K. Set S+ = {(s, k)} and S− = S \ {(s, k)}.
1. Let (s∗, k∗) = argmax(s,k)∈S− inf(s′,k′)∈S+{Hα(ψk

s ,ψ
k′
s′ )}.

if inf(s′,k′)∈S+

{
Hα(ψk∗

s∗ ,ψ
k′
s′ )
}
≤ 0 or S− = ∅,

Solve PA-HD(S+) and obtain solution π+
n , set T = t, and terminate.

else Update t← t+ 1, S+←{S+, (s∗, k∗)}, and S−← S− \ {(s∗, k∗)}. Return to Step 1.
Output: Parameter estimate π+

n , iteration count T .

We conclude this section by providing a simple numerical example to investigate how incorporat-

ing a priori information about the relative efficiency of agents affects estimation error, compared

to naively applying our base estimator to each agent type separately. We consider two agent types,

L and H, which have true parameters π0L and π0H , respectively. Suppose a type H agent is known

to be more outcome-efficient than a type L agent (§EC.3.1.1). Then the unknown parameters π0L

and π0H must satisfy the following inequalities, where ε > 0 is a small constant:

d∑
h=j

π0L
ah + ε≤

d∑
h=j

π0H
ah , for a∈ {1,2, . . . ,m− 1}, j ∈ J. (EC.10)
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Without outcome efficiency With outcome efficiency
m d n Type L Type H Mean Type L Type H Mean

2 2 100 0.135 0.112 0.123 0.104 0.080 0.092
2 2 500 0.094 0.095 0.095 0.069 0.091 0.080
2 2 1000 0.077 0.060 0.069 0.084 0.085 0.084

4 5 100 0.058 0.052 0.055 0.054 0.043 0.049
4 5 500 0.054 0.053 0.054 0.043 0.040 0.041
4 5 1000 0.042 0.044 0.043 0.052 0.041 0.046

Table 9. Normalized estimation error with and without outcome efficiency constraints,
averaged over 10 trials.

Recall that m and d denote the number of actions and outcomes, respectively. We consider two

problem sizes, given by (m,d) ∈ {(2,2), (4,5)}. For each of the two problem sizes, we consider

three sample sizes, given by n∈ {100,500,1000}. Then for each combination (m,d,n), we randomly

generate π0L and π0H from Π given by (EC.5), where Qπ is given by (EC.6). We use the same

data generation procedure described in §4.4.1.

Table 9 summarizes the estimation errors over 10 trials for both agent types, with and without

including (EC.10) in the parameter set Qπ during estimation. Observe that the mean estimation

error tends to decrease when the outcome efficiency information represented by the inequalities

(EC.10) is included, when n = 100 and n = 500. Conversely, for n = 1000, the estimation error

increases when the outcome efficiency information is incorporated. The intuition for this result

is as follows. Note that including the constraint (EC.10) in Qπ can be interpreted as restricting

the search space for the estimator LPA-DH. When n is small, the candidate distributions are poor

approximations of the rows of π0L and π0H , and this restriction of the search space steers the

estimator LPA-DH toward candidate distributions that approximate π0L and π0H well. However,

when the sample size is large, the candidate distributions are good approximations of the rows

of π0L and π0H , and the constraint (EC.10) restricts the search space for the estimator without

providing additional information, which has the net effect of causing errors to increase.

EC.4. A Dynamic Principal-Agent Model with Hidden Actions

Our focus in this paper has been on estimating the agent model in an offline setting, where all

data on historical contracts and outcomes is available at the outset, and the contract data ri, i∈ I

is given exogenously. In this section, we consider an online counterpart to our model, where the

principal can select the contracts to be offered to the agent in a dynamic manner. We note here

that while extending our principal-agent framework to a dynamic setting raises new and important

theoretical questions, a complete treatment of the dynamic setting is beyond the scope of this paper.
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Therefore, our focus will be to present results that parallel the offline setting, namely, presenting a

complete solution algorithm for the dynamic contracting problem, and proving consistency of the

corresponding estimates.

The remainder of this section is organized as follows. In §C.1, we briefly discuss related literature.

In §C.2, we formulate a dynamic variant of our principal-agent model. In §C.3, we present an

“ε-greedy” algorithm for the dynamic contracting problem, which involves iteratively solving an

integer program and a sequence of linear programs. In §C.4, we present two consistency results

related to the ε-greedy algorithm, and illustrate its performance with a simple numerical example.

Proofs are contained in §C.5.

EC.4.1. Related literature

There is an extensive literature on dynamic principal-agent models with hidden actions; for exam-

ples of foundational work, see Radner (1981), Rogerson (1985), Spear and Srivastava (1987), and

Abreu et al. (1990). This line of research has typically focused on characterizing the principal’s

optimal decisions in an environment where parameters of the agent model are known, including

the stochastic dependence of outcomes on agent actions.

The dynamic setting we consider is closer to the multi-armed bandit problem, which is a broad

modeling framework for dynamic decision-making problems (see Slivkins (2019) for a recent review

of bandit algorithms). A general setup for the multi-armed bandit problem with stochastic rewards

is as follows. In each of T rounds, a utility-maximizing decision maker chooses from a set of actions

(“arms”). The chosen arm generates a reward for the decision-maker, where the reward is an i.i.d.

sample from an unknown distribution that depends on the arm. Because the reward distribution

for each arm is unknown, the decision-maker faces what is often called an exploration-exploitation

trade-off: they must balance exploiting “good” arms (which have been observed to produce high

rewards in previous rounds) with exploring the full set of arms (which will improve knowledge

about each arm’s reward distribution).

Note that our paper focuses on estimating the distribution over outcomes induced by each

possible agent action. For this reason, it is natural to use the multi-armed bandit framework to

formulate a dynamic variant of our principal-agent model, where each arm represents a contract,

and the selected contract generates a random reward for the principal (via the agent’s hidden

action). Further, unlike the offline setting, here we assume that the principal has preferences over

the outcome set J . This setting is similar to work by Ho et al. (2016), who also address a dynamic

principal-agent problem within a multi-armed bandit framework. Similar to our paper, the authors

consider a principal-agent problem where a contract is a mapping of agent payments to outcomes,

and outcomes depend on an unobservable agent action. A key distinction between Ho et al. (2016)

and our work is that they assume the distribution over agent types is unknown, whereas we assume

the dependence of outcomes on agent actions is the unknown parameter.
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EC.4.2. Model

The principal-agent interaction proceeds over T time periods. In period t, the principal selects and

offers to the agent a contract rt ∈ R. As in the offline setting, the agent selects the action that

maximizes their expected utility under the selected contract. As before, the agent’s action remains

hidden to the principal, who instead observes an outcome ξt ∈ J in each period. If the agent takes

action a, then ξt = j with probability π0
aj, where π0 is unknown to the principal. Upon observing

the outcome ξt, the principal selects a new contract rt+1, which initiates the next period.

Note that principal’s preferences over the outcomes J are irrelevant for estimation in the offline

setting, because the contract data is already fixed. However, because in the dynamic setting the

principal now chooses the contracts rt, they must also balance estimation of π0 with maximizing

their own utility over the T rounds. Let ζj(r) be the principal’s utility under outcome {ξt = j},
which may include the payment rj to the agent. Recall that a(r) is the optimal action of the agent

under r and π0; the principal’s expected payoff under a contract r is then

U(r) =
∑
j∈J

π0
a(r),jζj(r). (EC.11)

The principal’s dynamic contracting problem is to select the sequence of contracts r1,r2, . . . ,rT

that maximizes their expected payoff over T periods:

max
rt∈R

T∑
t=1

U(rt). (EC.12)

We shall call any r∗ that satisfies r∗ ∈ argmaxr∈RU(r) an optimal contract. Note that the optimal

solution to (EC.12) is to simply let rt = r∗ for all t≥ 1. However, solving (EC.12) is challenging

because the principal’s utility function U(r) – and therefore the optimal contract r∗ – depends on

the unknown parameter π0. Therefore, the principal must trade-off learning U(r) (by estimating

π0) with maximizing U(r) (by selecting high-utility contracts).

EC.4.3. Algorithm overview

We now present a solution algorithm for the principal’s dynamic contracting problem (EC.12). Our

approach is similar to ε-greedy algorithms found in the multi-armed bandit literature, which are

intuitively simple and have been observed to perform well empirically (Kuleshov and Precup 2014).

Within an ε-greedy framework, the decision-maker chooses an exploratory action in period t with

probability εt, and chooses a utility-maximizing action with probability 1− εt. Here, “greediness”

refers to naively maximizing the decision maker’s utility using the incumbent parameter estimates.

In our setting, exploration means exploring the contract set R, which is necessary for learning

the parameter π0; exploitation means selecting the contract in R that maximizes the principal’s

expected single-period utility U(r), based on the current estimate of π0.

Before presenting the steps of our ε-greedy algorithm, we first define two new optimization

problems: one for each of the exploration and exploitation steps of the algorithm.
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EC.4.3.1. Exploration step. Note that the decision set to be explored is the continuous set

R. To make exploration of R tractable, we first randomly sample a set of contracts rs, s∈ S from

the contract set R, which remain fixed for the entire algorithm. Here, each rs, s∈ S is analogous to

one “arm” in the multi-armed bandit setting. Let nts be the number of times rs has been selected

after the tth round. Then we can construct the candidate distribution associated with rs as

vts =
1

nts

t∑
i=1

1{ξi = j}.

We assume that the agent’s true optimal action a(rs) is unique under each rs (note that this is

almost surely the case if the initial arms rs, s ∈ S are selected by randomly sampling from R

according to a continuous distribution). Each vts can then be interpreted as an empirical distribution

constructed by sampling nts times from the distribution π0
a(rs).

Next, define a set of error variables ε1, ε2, . . . , ε|S|, and let was be a binary variable equal to 1 if

vs is assigned to a∈A. We now define the following optimization problem:

minimize
w,ε

∑
s∈S

|εs| (EC.13a)

subject to
∑
a∈A

(∑
j∈J

vtsjrsj − ca

)
was + εs ≥

∑
a∈A

(∑
j∈J

vts′jrsj − ca

)
was′ , s∈ S, s′ ∈ S,

(EC.13b)∑
a∈A

was = 1, s∈ S, (EC.13c)

(PA-T)
∑
s∈S

was ≥ 1, a∈A, (EC.13d)

was ∈ {0,1}, a∈A,s∈ S. (EC.13e)

εs ≥ 0, s∈ S. (EC.13f)

Intuitively, formulation PA-T assigns each contract rs to the action a ∈ A that is believed to be

optimal under rs and the true model π0. Constraint (EC.13c) ensures every contract rs is assigned

to exactly one action, and (EC.13d) ensures every action has at least one contract assigned to

it. The key constraint of this formulation is (EC.13b): Given a contract rs, constraint (EC.13b)

forces the action associated with rs to yield at least as large of a utility for the agent as the

action associated with rs
′
, for every s′ ∈ S. Note that because vts is an approximation of π0

a for

some a∈A, constraint (EC.13b) may not hold when εs = 0, even if the binary decision variable w

correctly assigns each rs to the agent’s true optimal action. Therefore, εs is required to serve as

a slack variable that maintains feasibility of PA-T. Intuitively, εs can be interpreted as measuring

the sub-optimality of the assignment encoded by w.
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Let (w̄t, ε̄t) be the optimal solution to PA-T in round t. Then we construct the estimate π̂t as

follows:

π̂taj =

∑
s∈S v

t
sjn

t
sw̄

t
as∑

s∈S n
t
sw̄

t
as

, for a∈A,j ∈ J.

Intuitively, π̂ta is the average of all candidate distributions assigned to action a, weighted by their

sample sizes nts.

EC.4.3.2. Exploitation step. The exploitation step consists of solving the optimal contract-

ing problem OC(π̂t), described in §EC.1 of the electronic companion, under the incumbent estimate

π̂t.

EC.4.3.3. Algorithm summary. Having defined the optimization models PA-C and OC,

we can now summarize the steps of the ε-greedy algorithm (Algorithm 5). At each iteration, an

exploration action is taken with probability εt, by randomly selecting one of the contracts from

{r1,r2, . . . ,r|S|} and updating the set of candidate distributions accordingly, and an exploitation

action is taken with probability 1 − εt, by selecting the optimal contract based on the current

estimate, π̂.

Algorithm 5: ε-greedy algorithm for dynamic contracting

Input: Exploration parameters ε1, ε2, . . . , εT .
1. Initialize: Randomly sample S contracts r1,r2, . . . ,rS from set R. Initialize nts = 1 for s∈ S and t= 1.
2. for t= 1,2, . . . , T :

with probability εt:
Set r̂t = r̂t−1.
Randomly select s̄∈ S. Select contract rs̄ and observe outcome ξ̄. Set st = s̄ and ξt = ξ̄.

Update nts̄← nts̄ + 1 and vts̄j = 1
nts̄

∑t

i=1 1{ξi = j, si = s̄} for j ∈ J .

with probability 1− εt:
Solve PA-T and obtain w̄t. For each a∈A, j ∈ J , set π̂taj =

∑
s∈S v

t
sjn

t
sw̄

t
as∑

s∈S n
t
sw̄

t
as

.

Solve OC(π̂t) and obtain r̂t.
Output: Estimates π̂T and r̂T .

EC.4.4. Consistency, numerical examples, and discussion

We now present the main theoretical result of this section. First, consider the following assumption:

Assumption EC.3. For each s∈ S, there exists s′ ∈ S such that∑
j∈J

(π0

a(rs
′
),j
−π0

a(rs),j)r
s
j > c̄− c, (EC.14)

where c̄= supa∈A{ca} and c= infa∈A{ca}.
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Assumption EC.3 is an identifiability condition that ensures precise inference of π0, similar to

Assumption 2 in the offline setting. Loosely speaking, this condition ensures that if there exists a

solution w̄ to PA-T that assigns a candidate distribution vs to the wrong action, then the assign-

ments encoded in w̄ will eventually (as more data is collected) violate the optimality conditions in

(EC.13b). This has the effect of guaranteeing that the solution to PA-T identifies the correct action

for each candidate distribution vs in the limit. Next, Proposition EC.1 states that the condition in

EC.3 is sufficient for Algorithm 5 to uncover the true values of π0.

Proposition EC.1. Let Assumption EC.3 hold. Then the estimate π̂T produced by Algorithm

5 is consistent:

π̂T −→π0.

Note that Assumption EC.3 is stronger than the analogous condition in the offline setting, Assump-

tion EC.2). The reason for this difference is as follows: In the online setting, we restrict attention to

the subset of contracts {r1,r2, . . . ,r|S|} when estimating π̂. While focusing on this discrete subset of

R improves tractability, it also reduces variation in the data compared to the offline setting, which

reduces the information available to the estimator. Because the online setting has less variation

in contract data, a stronger identifiability condition is required to ensure that learning the precise

values of the parameter π0 remains possible.

Corollary EC.2. Let Assumption EC.3 hold. Then the contract r̂T produced by Algorithm 5

converges to a minimizer of the principal’s per-period regret:∣∣∣∣ 1

T

T∑
t=1

U(r̂T )− 1

T

T∑
t=1

U(r∗)

∣∣∣∣−→ 0.

The intuition behind Corollary EC.2 is straightforward – because π̂T is a consistent estimate of

π0, then solving OC(π̂T ) will eventually produce an optimal contract for the principal, as T −→∞.

We now illustrate Algorithm 5 through numerical examples. We consider two problem sizes,

given by (m,d)∈ {(2,2), (5,10)}. For each problem size, we construct the contract set as R= [1,2]d,

the agent cost vector c as a random sample from [0,1]m. We specify the principal’s utility as

ζj(r) = ζ̄j − rj, where ζ̄j is a random sample from [1,10]d. We construct the true parameter π0

by letting π0
a for each a ∈A be randomly generated from the (d− 1)-dimension simplex. We test

six parameterizations of the exploration probability εt. We first consider three “fixed” exploration

schemes, where εt = ε, for each ε ∈ {0.5,0.9,0.99}. We then consider three “variable” exploration

schemes, where εt = exp(−λ · t), for each λ∈ {10−2,10−3,10−4}. For each problem size and param-

eterization of εt, we run 10 trials of Algorithm 5 with T = 1000, where π0, ζ̄, and c are randomly

constructed in each trial.
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εt = ε εt = exp(−λ · t)
m d T ε= 0.5 ε= 0.9 ε= 0.99 λ= 10−2 λ= 10−3 λ= 10−4

2 2 50 0.21 0.11 0.07 0.06 0.06 0.06
2 2 100 0.20 0.11 0.07 0.06 0.06 0.06
2 2 500 0.16 0.08 0.07 0.05 0.06 0.06
2 2 1000 0.13 0.08 0.07 0.06 0.06 0.06

2 2 50 0.12 0.16 0.14 0.10 0.14 0.16
2 2 100 0.09 0.16 0.15 0.09 0.14 0.16
2 2 500 0.08 0.14 0.16 0.03 0.11 0.16
2 2 1000 0.08 0.14 0.16 0.02 0.09 0.16

Table 10. Estimation errors (top) and per-period regret (bottom) for six exploration
schemes, averaged over 10 trials (m= 2, d= 2).

εt = ε εt = exp(−λ · t)
m d T ε= 0.5 ε= 0.9 ε= 0.99 λ= 10−2 λ= 10−3 λ= 10−4

5 10 50 0.05 0.06 0.06 0.05 0.05 0.05
5 10 100 0.06 0.06 0.06 0.05 0.05 0.05
5 10 500 0.06 0.06 0.05 0.05 0.05 0.05
5 10 1000 0.06 0.06 0.05 0.05 0.05 0.05

5 10 50 0.78 0.82 0.87 0.78 0.84 0.85
5 10 100 0.77 0.83 0.87 0.74 0.83 0.84
5 10 500 0.78 0.82 0.85 0.58 0.79 0.83
5 10 1000 0.79 0.82 0.85 0.56 0.73 0.83

Table 11. Estimation errors (top) and per-period regret (bottom) for six exploration
schemes, averaged over 10 trials (m= 5, d= 10).

A summary of results is provided in Table 10 (m= 2, d= 2) and Table 11 (m= 5, d= 10). For each

of the six exploration schemes, we report the average estimation error and average per-period regret

at t= 100, t= 500 and t= 1000. Among the fixed exploration schemes, aggressive exploitation (εt =

0.5) attains the lowest regret and highest estimation error, and aggressive exploration (εt = 0.99)

attain the highest regret and lowest estimation error. These results demonstrate the exploration-

exploitation trade-off in our dynamic contracting problem. Comparing all six exploration schemes,

the variable scheme with λ= 10−2 appears to weakly dominate, by producing similar estimation

errors as the other approaches, but with significantly lower regret. This suggests that λ = 10−2

handles the exploration-exploitation trade-off the most efficiently. We also observe that the decrease

in regret is significantly more pronounced for the variable scheme with λ= 10−2 compared to the

other approaches, because it exploits the most aggressively as t increases (e.g., by t = 500, this

scheme exploits with probability 0.99.)

We conclude by highlighting directions for future work. First, the algorithm we presented in

this section is based on ε-greedy approaches found in the multi-armed bandit literature. Other
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well-known bandit algorithms may also be applicable in our setting, such as those based on upper

confidence bounds or Thompson sampling (Slivkins 2019). Second, while we have focused our

analysis in this section on asymptotic results, the standard performance measure of a dynamic

decision-making algorithm is a finite-sample bound on regret. It may be possible to obtain similar

bounds in our dynamic contracting setting. However, doing so will require addressing two technical

challenges of our setting that are not present in classical bandit problems: the continuous nature of

the decision space R (instead of a discrete set of arms), and discontinuity in the principal’s payoff

in r (due to jumps in the agent’s optimal action as r changes). Third, we have assumed throughout

that the agent behaves myopically by optimizing their single-period payoff. It may also be the case

that agents behave strategically, which would introduce new and challenging dynamics into the

problem.

Note also that the performance of Algorithm 5 is sensitive to how R is specified. Because R is

the exploration space, if the values in R are large compared to the principal’s utility, then the

algorithm may spend a large number of iterations exploring regions of R that are inefficient from

the principal’s perspective. This sensitivity to the contract set R occurs because the Algorithm

5 does not consider regret when selecting a contract to explore, which is common in ε-greedy

approaches.

EC.5. Proofs

Because the proof for Theorem 2 is long, we group all proofs into four subsections for ease of

navigation: §EC.5.1 contains the proofs for Theorem 1 and Proposition 1; §EC.5.2 contains the

proof of Theorem 2; §EC.5.3 contains the proofs of Proposition 2, Theorem 3, and Theorem 4; and

§E.4 contains the proofs for Sections EC.3 and EC.4.

EC.5.1. Proofs of Theorem 1 and Proposition 1

Before proving Theorem 1, we prove two supporting results, given in Lemmas EC.2 and EC.3.

Lemma EC.2 shows that the loss function Ln(π) is lower semicontinuous. Lemma EC.3 shows

that as n−→∞, the loss function Ln(π) converges point-wise to a function L(π), where L(π) is

uniquely minimized by the true parameter π0 if and only if Assumption 2 holds. Both of these

results are used to prove the consistency result in Theorem 1.

Lemma EC.2. Ln(π) is lower semicontinuous in π on Π for all n≥ 1.

Proof. Define N(δ) = {π ∈ Π|‖π − π̄‖1 < δ}. To show that Ln(π) is lower semicontinuous at all

π̄ ∈ Π and n ≥ 1, it suffices to prove the following statement (Rockafellar and Wets 2009): For

every ε > 0, there exists δ > 0 such that Ln(π̄)−Ln(π)< ε for all π ∈N(δ). The proof proceeds
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in two steps. First, we show that there exists δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈ N(δ),

A(ri,π)⊆A(ri, π̄) for all i∈ I. Second, we show lower semicontinuity of Ln(π) at π̄. Step 1. Fix π̄

and n. By way of contradiction, suppose that for all δ > 0, there exists π̌ ∈N(δ), a∈A(ri, π̌) and

i∈ I such that a /∈A(ri, π̄). Note that a /∈A(ri, π̄) and a∈A(ri, π̌) implies there exists a b∈A \ a

such that the following two inequalities hold:∑
j∈J

π̄ajr
i
j − ca <

∑
j∈J

π̄bjr
i
j − cb (EC.15)∑

j∈J

π̌ajr
i
j − ca ≥

∑
j∈J

π̌bjr
i
j − cb. (EC.16)

Combining (EC.15) and (EC.16) yields∑
j∈J

(π̌aj − π̄aj)rij − ca >
∑
j∈J

(π̌bj − π̄bj)rij − cb.

Letting δ −→ 0 implies ‖π̌− π̄‖1 −→ 0 and thus 0> 0, a contradiction. It follows that there exists

δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈N(δ), A(ri,π)⊆A(ri, π̄) for all i ∈ I. Step 2. Fix ε > 0.

By way of contradiction, suppose Ln(π) is not lower semicontinuous; that is, for every δ > 0, there

exists π̌δ ∈N(δ) such that Ln(π̄)−Ln(π̌δ)> ε. Next, let (x(π),ω(π)) be an optimal solution to

(4) under π= π̌δ. By Step 1, if δ ∈ (0, δ̄), then A(ri, π̌δ)⊆A(ri, π̄) for all i∈ I. Because A(ri, π̌δ)⊆

A(ri, π̄) for all i ∈ I, it is feasible to set π = π̄ and (x,ω) = (x(π̌δ),ω(π̌δ)) in (4). It follows that

Ln(π̄) = ‖π̄−ω(π̄)‖1 ≤ ‖π̄−ω(π̌δ)‖1. Therefore,

ε <Ln(π̄)−Ln(π̌δ)≤ ‖π̄−ω(π̌δ)‖1−Ln(π̌δ) = ‖π̄−ω(π̌δ)‖1−‖π̌−ω(π̌δ)‖1.

Further, it is straightforward to verify that

‖π̄−ω(π̌δ)‖1−‖π̌δ −ω(π̌δ)‖1 ≤ ‖π̄− π̌δ‖1.

Thus, ε ≤ ‖π̄ − π̌δ‖1. Letting δ −→ 0 implies ‖π̄ − π̌δ‖1 −→ 0, which yields a contradiction. We

conclude that for every ε > 0, there exists δ > 0 such that Ln(π̄)−Ln(π)< ε for all π ∈N(δ), and

thus Ln(π) is lower semicontinuous. �

Lemma EC.3. There exists L(π) : Π −→ R such that (i) L(π) <∞ and |Ln(π)− L(π)| −→ 0

for all π ∈Π, (ii) L(π0) = 0, and (iii) L(π0)<L(π) for every π ∈Π such that π 6=π0 if and only

if Assumption 2 holds.

Proof. The proof proceeds in two steps. In Step 1, we show the following supporting result: For

any (a, j),

limn→∞ωaj(π) =
1

Pr(r∈Ra(π))

∑
b∈A

π0
bj ·Pr(r∈Ra(π),r∈Rb(π0)), (EC.17)
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where Ra(π) is defined in (5). In Step 2, we prove there exists a function L(π) such that statements

(i), (ii) and (iii) hold. Step 1. Pick any (a, j). Note that xi = a holds in (4) holds if and only if

ri ∈Ra(π). For each (a, j), we can then write ωaj as

ωaj(π) = n · 1

n
·ωaj(π) =

n∑n

i=1 I{ri ∈Ra(π)}

 1

n

∑
i∈{i|ri∈Ra(π)}

yij

 . (EC.18)

Consider the first term on the right-hand side of (EC.18). By Assumption 1, letting n−→∞ yields

n∑n

i=1 I{ri ∈Ra(π)}
=

1

Pr(r∈Ra(π))
. (EC.19)

For the second term on the right-hand side of (EC.18), we have

lim
n→∞

1

n

∑
i∈{i|ri∈Ra(π)}

yij = lim
n→∞

1

n

n∑
i=1

I{ξi = j,ri ∈Ra(π)},

= Pr(ξ = j,r∈Ra(π)),

=
∑
b∈A

Pr(ξ = j,r∈Ra(π)|r∈Rb(π0)) ·Pr(r∈Rb(π0)).

The first equality above follows because yij = I{ξi = j}, by definition. The second equality follows

from the strong law of large numbers. The third equality follows from the law of total probability.

Next, note that by Assumption 1, the events {ξ = j} and {r∈Ra(π)} are conditionally independent

given {r∈Rb(π0)}. Therefore,

Pr(ξ = j,r∈Ra(π)|r∈Rb(π0)) = Pr(ξ = j|r∈Rb(π0)) ·Pr(r∈Ra(π)|r∈Rb(π0)),

= π0
bj ·Pr(r∈Ra(π)|r∈Rb(π0)),

where the second equality follows by definition of π0. It follows that

lim
n→∞

1

n

∑
i∈{i|ri∈Ra(π)}

yij =
∑
b∈A

π0
bj ·Pr(r∈Ra(π)|r∈Rb(π0)) ·Pr(r∈Rb(π0)),

=
∑
b∈A

π0
bj ·Pr(r∈Ra(π),r∈Rb(π0)). (EC.20)

Next, combining (EC.18), (EC.19), and (EC.20) yields

lim
n→∞

ωaj(π) =
1

Pr(r∈Ra(π))

∑
b∈A

π0
bj ·Pr(r∈Ra(π),r∈Rb(π0)),

as desired. Step 2. Define L(π) =
∑

a∈A
∑

j∈J |πaj − limn→∞ωaj(π)|. We prove (i), (ii) and (iii)

in order. (i). Note by continuity of the absolute value function, limn→∞ |πaj − ωaj(π)| = |πaj −

limn→∞ωaj(π)| for all (a, j) and π ∈Π. It follows by definition of L(π) that |Ln(π)−L(π)| −→ 0.

Further, L(π0)<∞ follows by definition of L(π) and because limn→∞ωaj(π)<∞ by Step 1. (ii).
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By definition of L(π), to show that L(π0) = 0, it suffices to show that π0
aj = limn→∞ωaj(π

0) for all

(a, j). Pick any (a, j), and note

π0
aj =

1

Pr(r∈Ra(π0))
·π0

aj ·Pr(r∈Ra(π0)),

=
1

Pr(r∈Ra(π0))

∑
b∈A

π0
bj ·Pr(r∈Ra(π0),r∈Rb(π0)),

= lim
n→∞

ωaj(π
0),

where the first equality follows by multiplying and dividing by Pr(r∈Ra(π0)), the second equality

follows because Pr(r ∈ Ra(π0),r ∈ Rb(π0)) = 0 for all b 6= a by continuity of f(r), and the third

equality follows from Step 1. Therefore, L(π0) = 0. (iii). Next, we establish that L(π)> 0 for all

π 6= π0 if and only if Assumption 2 holds. First, let Assumption 2 hold. Pick any π̄ 6= π0, and

suppose by way of contradiction that L(π̄) = 0. It follows that for all (a, j),

π̄aj = lim
n→∞

ωaj(π̄),

=
1

Pr(r∈Ra(π̄))

∑
b∈A

π0
bj ·Pr(r∈Ra(π̄),r∈Rb(π0)),

=
∑
b∈A

π0
bj ·Pr(r∈Rb(π0)|r∈Ra(π̄)),

where the first line follows because L(π̄) = 0, the second line follows from Step 1, and the third

line follows by the probability chain rule. However, by Assumption 2, there exists an (a, j) such

that π̄aj 6=
∑

b∈A π
0
bj ·Pr(r ∈Rb(π0)|r ∈Ra(π̄)), which yields a contradiction. Therefore, L(π)> 0

for all π 6=π0. Conversely, if Assumption 2 does not hold, then by parallel argument to the above,

there exists π̌ ∈Π where π̌ 6=π0 such that π̌aj = limn→∞(π̌) for all (a, j). By definition of L(π), it

follows that L(π0) =L(π̌) = 0. �

Proof of Theorem 1. The proof proceeds in two steps. First, we show |Ln(π̂n)−Ln(π0)| −→ 0.

Second, we show plimn→∞π̂n =π0 if and only if Assumption 2 holds. Step 1. Because Ln(π0)−→

L(π0) by Lemma EC.3(i) and L(π0) = 0 by Lemma EC.3(ii), we have Ln(π0)−→ 0. Next, note

0≤Ln(π̂n)≤Ln(π0),

where the first and second inequalities follow by definition of Ln(π) and π̂n, respectively. It

follows that Ln(π̂n) −→ 0. Therefore, |Ln(π̂n) − Ln(π0)| −→ 0. Step 2. Because Ln(π) is lower

semicontinuous by Lemma EC.2, |Ln(π̂n)−Ln(π0)| −→ 0 by Step 1, and Π is compact, by Theorem

5.14 of Van der Vaart (2000), plimn→∞π̂n ∈ argminπ∈ΠL(π). Next, suppose Assumption 2 holds.

Then by Lemma EC.3, argminπ∈ΠL(π) = π0, which implies plimn→∞π̂n = π0. If Assumption 2
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does not hold, then by Lemma EC.3(iii), there exists π̃ 6=π0 such that L(π̃) =L(π0) = 0, in which

case plimn→∞π̂n 6=π0. �

Proof of Proposition 1. We prove statements (i), (ii) and (iii) in order. Part (i). To show that

the minimizer of PA-C also minimizes the proxy loss function Zn(π), it suffices to show that solving

PA-C and minimizing Zn(π) are equivalent problems in the following sense: (a) For any (π,x,z)

that is feasible for PA-C, π ∈Π; (b) For any π ∈Π, there exists (x,z) such that (π,x,z) is feasible

to PA-C; and (c) for any (π,x,z) feasible for PA-C, Zn(π) = ZCn (π,x,z), where ZCn (π,x,z) is the

objective of PA-C. Statements (a) and (b) follow immediately by the construction of PA-C and the

proxy loss problem (8); it remains to prove (c). Let π be fixed in PA-C, and let (x,z) be a solution

to the resulting subproblem. Next, note∑
i∈I

(πaj − yij)xia =
∑

i∈{i|xi=a}

(πaj − yij),

= (πaj −ωaj)|{i|xi = a}|,

= (πaj −ωaj)ηaj, (EC.21)

where the first equality follows because xia = 1 if and only if i ∈ {i|xi = a}, the second equality

follows from the definition of ω, and the third equality follows by definition of η. Then we have

ZCn (π,x,z) =
∑
a∈A

∑
j∈J

∣∣∣ 1
n

∑
i∈I

(πaj − yij)xia
∣∣∣,

=
1

n

∑
a∈A

∑
j∈J

∣∣∣(πaj −ωaj)ηaj∣∣∣,
=Zn(π),

where the first equality follows from (10a)−(10c), the second equality follows from (EC.21), the

third equality follows by definition of the element-wise norm ‖ · ‖1, and the final equality follows

by definition of Zn(π). Therefore, Zn(π) =ZCn (π,x,z) for any (π,x,z) feasible for PA-C. It follows

that π∗n ∈ argminπ∈ΠZn(π). Part (ii). The proof of Theorem 1 establishes that Ln(π̂n)−→ 0. Note

Ln(π̂n) ≤ Ln(π̄n), because π̂n is a minimizer of Ln(π) by definition. Therefore, by definition of

Ln(π), it suffices to show that for all (a, j) and ε > 0,

Pr

 1

|Ia(π̄n)|
∑

i∈Ia(π̄n)

yij − (π̄aj)n >
ε

md

−→ 0, (EC.22)

where Ia(π) = {i∈ I|ri ∈Ra(π)}. In the remainder of the proof, we suppress dependence of π̄n on

n for conciseness. Next,

Pr

 1

|Ia(π̄)|
∑

i∈Ia(π̄)

yij − π̄aj >
ε

md

= Pr

 ∑
i∈Ia(π̄)

yij − π̄aj|Ia(π̄)|> ε|Ia(π̄)|
md

 ,
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≤Pr

∑
b∈A

∑
j∈J

∣∣∣ ∑
i∈Ia(π̄)

yij − π̄aj|Ia(π̄)|
∣∣∣> ε|Ia(π̄)|

md

 ,

= Pr

(
nZn(π̄)>

ε|Ia(π̄)|
md

)
,

≤Pr

(
nZn(π0)>

ε|Ia(π̄)|
md

)
,

where the first line follows by multiplying both sides of the inequality by |Ia(π̄)|, the second line

follows by non-negativity of the absolute value and summing over b ∈ A and j ∈ J , the third

line follows by definition of Zn(π), and the fourth line follows because π̄ ∈ argminπ∈Π̄Zn(π), by

definition. We can now write

Pr

(
nZn(π0)>

ε|Ia(π̄)|
md

)
= Pr

∑
b∈A

∑
j∈J

∣∣∣ ∑
i∈Ib(π0)

yij −π0
bj|Ib(π0)|

∣∣∣> ε|Ia(π̄)|
md


≤
∑
b∈A

∑
j∈J

Pr

∣∣∣ ∑
i∈Ib(π0)

yij −π0
bj|Ib(π0)|

∣∣∣> ε|Ia(π̄)|
m2d2


≤
∑
b∈A

∑
j∈J

n∑
k=0

Pr

∣∣∣ ∑
i∈Ib(π0)

yij −π0
bj|Ib(π0)|

∣∣∣> εk

m2d2

∣∣∣∣∣|Ia(π̄)|= k

Pr(|Ia(π̄)|= k)

≤ 2
∑
b∈A

∑
j∈J

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1

|Ib(π0)|

)
Pr(|Ia(π̄)|= k)

≤ 2d
∑
b∈A

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1

n

)
Pr(|Ia(π̄)|= k),

where the first line follows by definition of Zn(π), the second line follows from the union bound,

the third line follows by conditioning on |Ia(π̄)|, the fourth line follows by Hoeffding’s inequality,

and the fifth line follows by summing over j ∈ J and because n≥ |Ib(π0)| for all b ∈ A. Thus, to

prove that (EC.22) holds, it remains to show that for each a∈A,

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1

n

)
Pr(Ia(π̄) = k)−→ 0.

Next, using the fact that Pr(|Ia(π̄)| = k), k = 1, . . . , n are binomial probabilities with parameter

Pr(r∈Ra(π̄)), and Pr(r∈Ra(π))> 0 for all a∈A and π ∈Π (Assumption 1), it can be shown with

some effort that for any δ ∈ (0,1), there exists n > 0 and K ∈ [0, n] such that Pr(|Ia(π)| ≤K)≤ δ

for any π ∈Π and exp(−( εk
m2d2 )2 · 1

n
)< δ for all k≥K. It follows that

K∑
k=0

Pr(|Ia(π̄)|= k) = Pr(|Ia(π̄)| ≤K)≤ δ (EC.23)
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and

n∑
k=K

δ ·Pr(|Ia(π̄)|= k) = δ
n∑

k=K

Pr(|Ia(π̄)|= k)≤ δ. (EC.24)

Then we can write

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1

n

)
Pr(|Ia(π̄)|= k)≤

K−1∑
k=0

Pr(|Ia(π̄)|= k) +
n∑

k=K

δ ·Pr(|Ia(π̄)|= k)

≤ 2δ,

where the first term after the first inequality follows because exp(−( εk
m2d2 )2 · 1

n
) ≤ 1 for all

k ∈ [0,K − 1] and n≥ 0, and the second term follows because exp(−( εk
m2d2 )2 · 1

n
)≤ δ for all k ≥K.

Letting δ −→ 0 yields the result. Part (iii). Because |Ln(π∗n)− Ln(π̂n)| −→ 0 by part (ii) above,

and |Ln(π̂n)−Ln(π0)| −→ 0 by Theorem 1, |Ln(π∗n)−Ln(π0)| −→ 0. The remainder of the proof

follows by parallel argument to the proof of Theorem 1, with π∗n in place of π̂n. �

EC.5.2. Proof of Theorem 2

We first present two helpful supporting results in Lemmas EC.4 and EC.5. Lemma EC.4 is a

concentration inequality that bounds the distance between an empirical mass function obtained

from sampling from a discrete distribution and the discrete distribution itself. In Lemma EC.5,

we define a Bernoulli random variable ea(π
0,π), whose value depends on the realization of r, and

is equal to 1 if the agent’s optimal action is a under the true parameter π0 but not under an

alternative model π. Intuitively, the event {ea(π0,π) = 1} represents a “mis-classification” of the

agent action by the model π. Lemma EC.5 develops a bound on the probability that ea(π
0,π) is

positive (i.e., equal to 1), which is the key result that we use to obtain the bound in Theorem 2.

Lemma EC.4. Let ξ1, ξ2, . . ., ξn be i.i.d. discrete random variables with support J = {1,2, . . . , d}

and mass function λj = Pr(ξ = j) for j ∈ J . Define fj = 1
n

∑n

i=1 I{ξi = j} to be the empirical prob-

ability. Then

Pr

(
sup
j∈J
|fj −λj|> ε

)
≤ 2exp(−nε2).

Proof. For convenience, let Λj =
∑j

k=1 λk be the cumulative distribution and let Fj =
∑j

k=1 fk be

the empirical cumulative distribution. With some effort, it can be shown that supj∈J |fj − λj| ≤

2 supj∈J |Fj −Λj|. It follows that for any ε > 0,

Pr

(
sup
j∈J
|fj −λj|> ε

)
≤Pr

(
2 sup
j∈J
|Fj −Λj|> ε

)
= Pr

(
sup
j∈J
|Fj −Λj|> ε/2

)
≤ 2exp(−nε2),

where the final inequality is the Dvoretzky−Kiefer−Wolfowitz inequality (Massart 1990). �
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Lemma EC.5. Let Assumption 3 hold. Let ea(π
0,π) be a Bernoulli random variable equal to

1 if the events {r∈Ra(π0)} and {r /∈Ra(π)} both occur. Then there exists π̄ ∈Π, and constants

δ1 ∈ (0,1) and δ2 ∈ (0,1) such that

Pr(ea(π
0,π)> 0)≤ 4m(1− δ1(1− δ2))n (EC.25)

for all a∈A.

Proof. The proof proceeds in four steps. In the first step, we construct π̄. In the second and third

steps, we prove two useful inequalities. In the fourth step, we prove the inequality (EC.25) in the

lemma statement. Step 1. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S such

that Bs(a) ∈Ra(π0). Pick s(a) accordingly for each a∈A, and set was = 1 for s= s(a) and was = 0

for s ∈ S \ s(a). Then let π̄a =
∑

s∈S vswas, for a ∈ A. Note that by construction, π̄a = vs(a) for

a ∈ A. Step 2. First, we define the following useful quantity, which will be used throughout the

proof of Theorem 2:

ua(r,π) = inf
b∈A\a

{∑
j∈J

(πaj −πbj)rj + cb− ca

}
.

Intuitively, ua(r,π) represents the difference in agent utility between action a and the highest-

utility action other than a. Based on this definition, note that an action a is optimal if and only

if ua(r,π)≥ 0. In this step, we show that there exists δ1 ∈ (0,1) and δ2 ∈ (0,1) such that Pr(r ∈

Bs)≥ δ1 for all s∈ S, and ∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr≤ δ2 (EC.26)

for all k≥ 0 and a∈A. Recall that r̄= supr∈R ‖r‖0 <∞; that is, r̄ is an upperbound on the largest

agent payment rj. First, for the existence of δ1 ∈ (0,1), it follows from the continuity of f(r) on R

(Assumption 1) and Bs ⊆R that Pr(r∈Bs)> 0 for all s∈ S. Letting δ1 = infs∈S Pr(r∈Bs) implies

Pr(r ∈ Bs) ≥ δ1 for all s ∈ S, as desired. Next, for the existence of δ2 ∈ (0,1) such that (EC.26)

holds, first consider the case where k= 0. Then∫
Ra(π0)

exp

(
−0

(
ua(r,π

0)

2r̄d

)2
)
f(r)dr=

∫
Ra(π0)

f(r)dr< 1,

for all a∈A, where the final inequality follows because Ra(π
0)⊂R for all a∈A (Assumption 1). It

follows there exists δ̃ ∈ (0,1) such that (EC.26) holds for k= 0 and all a∈A. Now consider the case

where k≥ 1. Observe that for all r such that ua(r,π
0)> 0, exp(−(ua(r,π

0)/(2r̄d))2)< 1. Therefore,
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for each a∈A there exists δ̃a ∈ (0,1) such that if ua(r,π
0)> 0, then 0< exp(−(ua(r,π

0)/(2r̄d))2)≤

δ̃a < 1. Next, exponentiating and integrating both sides of the preceding inequality yields∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr≤

∫
Ra(π0)

(δ̃a)
kf(r)dr≤ (δ̃a)

k.

The result follows from setting δ2 = sup{δ̃, supa∈A δ̃a}. Step 3. In this step, we show that for π̄ as

constructed in step 1 and any a∈A,

Pr

(
sup
j∈J
|π̄bj −π0

bj|>
ua(r,π

0)

2r̄d

)
≤ 2(1− δ1(1− δ2))n

for all b∈A. For convenience, let Is = {i∈ I|ri ∈Bs}. Then for each b∈A,

Pr

(
sup
j∈J
|π̄bj −π0

bj|>
ua(r,π

0)

2r̄d

)
= Pr

sup
j∈J

∣∣∣∣ 1

|Is(a)|
∑
i∈Is(a)

yij −π0
bj

∣∣∣∣> ua(r,π
0)

2r̄d


=

n∑
k=0

Pr

sup
j∈J

∣∣∣∣ 1

|Is(a)|
∑
i∈Is(a)

yij −π0
bj

∣∣∣∣> ua(r,π
0)

2r̄d

∣∣∣∣|Is(a)|= k

Pr(|Is(a)|= k)

=
n∑
k=0

∫
R

Pr

sup
j∈J

∣∣∣∣1k ∑
i∈Is(a)

yij −π0
bj

∣∣∣∣> ua(r,π
0)

2r̄d

∣∣∣∣|Is(a)|= k

f(r)dr

Pr(|Is(a)|= k)

≤ 2
n∑
k=0

[∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr

]
Pr(|Is(a)|= k)

≤ 2
n∑
k=0

δ̃kPr(|Is(a)|= k),

The first line follows because π̄aj = vs(a),j = (1/|Is(a)|)
∑

i∈Is(a)
yij for all (a, j), by construction of

vs (Algorithm 1) and π̄ (Step 1). The second line follows from the total probability rule, because

|Is(a)| is a binomial random variable. The third line follows from conditioning on r and integrating

over R, and because yij for i ∈ |Is(a)| are independent of r. The fourth line follows from Lemma

EC.4, and because Ra(π
0) ⊆ R. The fifth line follows from Step 2 of the proof. Next, note that

|Is| is the number of observations that are contained in the ball Bs. Therefore, |Is| is a binomial

random variable with parameter λs = Pr(r∈Bs). We can now write

2
n∑
k=0

δk2 ·Pr(|Is(a)|= k) = 2
n∑
k=0

(δ2 ·λs(a))
k n!

k!(n− k)!
(1−λs(a))

n−k

= 2(1−λs(a)(1− δ2))n

≤ 2(1− δ1(1− δ2))n,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)|= k) explicitly and

grouping terms raised to the kth power, the second equality follows immediately from the binomial
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theorem, and the third inequality follows from Step 2. The result follows. Step 4. We now prove

inequality (EC.25). Note that by definition, ea(π
0, π̄)> 0 implies r /∈Ra(π̄), which implies there

exists b∈A such that
∑

j∈J(π̄bj − π̄aj)rj > cb− ca. Therefore, by the union bound,

Pr(ea(π
0, π̄)> 0)≤

∑
b∈A\a

Pr

(∑
j∈J

(π̄bj − π̄aj)rj > cb− ca

)
.

In the remainder of the proof, we bound Pr
(∑

j∈J(π̄bj − π̄aj)rj > cb− ca
)

for each b ∈ A \ a. For

each b∈A \ a, we have

Pr

(∑
j∈J

(π̄bj − π̄aj)rj > cb− ca

)
,

≤Pr

(∑
j∈J

(π̄bj −π0
bj)rj −

∑
j∈J

(π̄aj − π̄0
aj)rj >ua(r,π

0)

)
,

≤Pr

({∑
j∈J

(π̄bj −π0
bj)rj >

ua(r,π
0)

2

}
∪

{∑
j∈J

(π̄0
aj − π̄aj)rj >

ua(r,π
0)

2

})
,

≤Pr

({
sup
j∈J
|π̄bj −π0

bj|>
ua(r,π

0)

2r̄d

}
∪
{

sup
j∈J
|π0
aj − π̄aj|>

ua(r,π
0)

2r̄d

})
,

≤Pr

(
sup
j∈J
|π̄bj −π0

bj|>
ua(r,π

0)

2r̄d

)
+ Pr

(
sup
j∈J
|π0
aj − π̄aj|>

ua(r,π
0)

2r̄d

)
,

≤ 4(1− δ1(1− δ2))n.

The first inequality follows because ua(r,π
0)≤

∑
j∈J(π0

aj − π0
bj)rj + cb− ca for all b ∈A, by defini-

tion of ua(r,π
0). The second inequality follows because

∑
j∈J(πbj − π0

bj)rj −
∑

j∈J(π̄aj − π0
aj)rj >

ua(r,π
0) implies at least one of

∑
j∈J(π̄bj−π0

bj)rj >ua(r,π
0)/2 or

∑
j∈J(π0

aj− π̄aj)rj >ua(r,π0)/2

holds. The third inequality follows because |J | supj∈J{(π0
aj − π̄aj)rj} ≥

∑
j∈J(π0

aj − π̄aj)rj, |J |= d,

and r̄ ≥ rj for all j ∈ J . The fourth inequality follows from the union bound. The fifth inequality

follows from Step 3. The result follows by summing the final inequality over b∈A. �

Proof of Theorem 2. We prove the result by constructing a sequence of feasible solutions π̄n

to PA-D, and bounding the objective function under π̄n. For conciseness we suppress dependence

of π̄n and π̃n on n. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S such that

Bs(a) ∈Ra(π0). Pick s(a) accordingly for each a ∈A. Set w̄as = 1 for s= s(a) and w̄as = 0 for all

s∈ S \s(a). Fix w = w̄ in PA-D and let (z̄, x̄, φ̄) be the solution of the resulting subproblem. Then

(w̄, z̄, x̄, φ̄) is a feasible solution to PA-D, and the associated estimate is given by

π̄a =
∑
s∈S

vsw̄as = vs(a), a∈A.
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Because π̄ is attained at a feasible solution to PA-D, Zn(π̃)≤Zn(π̄). It follows that

Pr(|Zn(π̂)−Zn(π̃)|> ε)≤Pr(Zn(π̃)> ε)≤Pr(Zn(π̄)> ε),

for any ε > 0. Therefore, it suffices to show that Pr(Zn(π̄) > ε) = O(n2κn) for some κ ∈ (0,1).

Because Zn(π) =
∑

a∈A
∑

j∈J
|Ia(π)|
n
|πaj−ωaj(π̄)| by definition, we shall bound Zn(π̄) by bounding

|Ia(π)|
n
|π̄aj −ωaj(π̄)| for each (a, j). Next, pick any (a, j). Then

|Ia(π̄)|
n

|π̄aj −ωaj(π̄)|= |Ia(π̄)|
n

∣∣π̄aj −π0
aj +π0

aj −ωaj(π0) +ωaj(π
0)−ωaj(π̄)

∣∣ ,
≤ |Ia(π̄)|

n

(∣∣π̄aj −π0
aj

∣∣+ ∣∣π0
aj −ωaj(π0)

∣∣+ ∣∣ωaj(π0)−ωaj(π̄)
∣∣) ,

≤ |π̄aj −π0
aj|+ |π0

aj −ωaj(π0)|+ |ωaj(π0)−ωaj(π̄)|, (EC.27)

where the second line follows by the triangle inequality, and the third line follows because |Ia(π)| ≤
n for any π ∈Π. The remainder of the proof proceeds in three steps. In each step, we bound one of

the terms in the right-hand side of (EC.27), from left to right. Step 1. For the first term, |π̄aj−π0
aj|,

note

Pr(|π̄aj −π0
aj|> ε) =

n∑
k=0

Pr(|π̄aj −π0
aj|> ε||Is(a)|= k)Pr(|Is(a)|= k)

=
n∑
k=0

Pr

∣∣∣∣ 1

|Is(a)|
∑
i∈Is(a)

yij −π0
aj

∣∣∣∣> ε
∣∣∣∣∣|Is(a)|= k

Pr(|Is(a)|= k)

≤
n∑
k=0

2exp(−ε2k)Pr(|Is(a)|= k).

The first line follows by conditioning on |Is(a)|= k. The second line follows because π̄aj = vs(a),j =

(1/|Is(a)|)
∑

i∈Is(a)
yij by the construction of π̄aj above and the definition of vs(a) (Algorithm 1). For

the third line, note that (1/|Is(a)|)
∑

i∈Is(a)
yij is the empirical mass function for the independent

variables ξi for all i∈ Is(a), generated by π0. The inequality, therefore, follows by an application of

Lemma EC.4. Next, because the ri are i.i.d. (Assumption 1), |Is(a)| is a binomial random variable

with parameter Pr(r∈Bs(a)). For conciseness, define λs(a) = Pr(r∈Bs(a)). We now have

n∑
k=0

(
2exp(−ε2k)

)
Pr(|Is(a)|= k) =

n∑
k=0

(
2exp(−ε2k)

) n!

k!(n− k)!
λks(a)(1−λs(a))

n−k

= 2
n∑
k=0

(
λs(a) exp(−ε2)

)k n!

k!(n− k)!
(1−λs(a))

n−k,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)| = k) explicitly,

and the second equality follows from grouping terms raised to the kth power. Finally, we have

2
n∑
k=0

(
λs(a) exp(−ε2)

)k n!

k!(n− k)!
(1−λs(a))

n−k = 2(1−λs(a)(1− exp(−ε2)))n

≤ 2(1− δ1(1− exp(−ε2)))n,
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for some δ1 ∈ (0,1), where the equality follows by applying the binomial theorem, and the inequality

follows by letting δ1 = infs∈S λs(a). Therefore,

Pr(|(π̄aj −π0
aj|> ε)≤ 2(1− δ1(1− exp(−ε2)))n. (EC.28)

Step 2. Next, we bound the second term |π0
aj − ωaj(π

0)| in (EC.27). Because ωaj(π
0) =

(1/|Ia(π0)|)
∑

i∈Ia(π0) y
i
j, it follows immediately from Lemma EC.4 that

Pr(|π0
aj −ωaj(π0)|> ε)≤ 2exp(−nε2). (EC.29)

Step 3. Next, we bound the third term |ωaj(π0)−ωaj(π̄)| in (EC.27). For convenience, let βaj(π)

be a Bernoulli random variable equal to 1 if the events {i∈ Ia(π)} and {yj = 1} both occur, and let

βiaj(π) be the realized value of βaj(π) in the ith observation. Using the definition of βiaj, it follows

that

|ωaj(π0)−ωaj(π̄)|=
∣∣∣∣ 1

|Ia(π0)|
∑

i∈Ia(π0)

yij −
1

|Ia(π̄)|
∑

i∈Ia(π̄)

yij

∣∣∣∣
=

∣∣∣∣ 1

|Ia(π0)|
∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣.
Next, we have∣∣∣∣ 1

|Ia(π0)|
∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣≤ ∣∣∣∣max

{
1

|Ia(π0)|
,

1

|Ia(π̄)|

}∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣
≤
∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)−βiaj(π̄)) +

∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄)

∣∣∣∣
≤
∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)−βiaj(π̄))

∣∣∣∣+ ∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄),

(EC.30)

where the first two lines are consequences of the max{·} operator, and the third line follows from

the triangle inequality. We shall bound each of the two terms on the right-hand side of (EC.30)

separately. For the first term on the right-hand side of (EC.30), observe that by definition of

βiaj(π),
∑

j∈J β
i
aj(π) = 1 if and only if i ∈ Ia(π). Recall from Lemma EC.5 that ea(π

0, π̄) is a

Bernoulli variable equal to 1 if the events {r∈Ra(π0)} and {r /∈Ra(π̄)} both occur. Further, note

βiaj(π
0)−βiaj(π̄)> 0 implies ri /∈Ra(π̄), which implies eia(π

0, π̄) = 1. Therefore,∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)−βiaj(π̄))

∣∣∣∣≤ 1

|Ia(π̄)|
∑
i∈I

eia(π
0, π̄).

Next, for any ε∈ (0,1),

Pr

(
1

|Ia(π̄)|
∑
i∈I

eia(π
0, π̄)> ε

)
≤Pr

(∑
i∈I

eia(π
0, π̄)> ε

)
≤
∑
i∈I

Pr
(
eia(π

0, π̄)> ε
)

≤ nPr
(
ea(π

0, π̄)> ε
)
,
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where the first inequality follows because |Ia(π̄)| ≥ 1 by Assumption 3 and the construction of π̄, the

second inequality follows from applying the union bound, and the third inequality follows because

the eia are i.i.d. (Assumption 1). Next, by Lemma EC.5, Pr (ea(π
0, π̄)> ε)≤ 4m(1− δ1(1− δ2))n.

Therefore, for any ε∈ (0,1),

Pr

(∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)−βiaj(π̄))

∣∣∣∣> ε
)
≤ 4mn(1− δ1(1− δ2))n. (EC.31)

Next, we bound the second term in (EC.30). For any ε∈ (0,1), note

Pr

(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄)> ε

)
≤ nPr

(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣> ε) ,
which follows from the union bound and because βiaj(π̄)≤ 1 for all i∈ I. Next, note that∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣≤ ||Ia(π0)| − |Ia(π̄)||,

which follows because |Ia(π0)| ≥ 1 and |Ia(π̄)| ≥ 1 by Assumption 3 and by construction of π̄.

Therefore,

n ·Pr

(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣> ε)≤ n ·Pr
(
||Ia(π0)| − |Ia(π̄)||> ε

)
= n ·Pr

(∣∣∣∣∑
i∈I

∑
j∈J

(
βiaj(π

0)−βiaj(π̄)
) ∣∣∣∣> ε

)

≤ n ·Pr

(∑
i∈I

eia(π
0, π̄)> ε

)
≤ n2 ·Pr

(
ea(π

0, π̄)> ε
)

≤ 4mn2(1− δ1(1− δ2))n, (EC.32)

where the second line follows because |Ia(π)|=
∑

i∈I
∑

j∈J β
i
aj(π) by definition of βiaj(π), the third

line follows because
∑

j∈J(βiaj(π
0) − βiaj(π̄)) ≤ eia(π0, π̄) for all i ∈ I, the fourth line follows by

applying the union bound and noting that the eia(π
0, π̄) are i.i.d. (Assumption 1), and the fifth

line follows from Lemma EC.5. Therefore, combining (EC.31) and (EC.32) produces the following

bound on the third term in (EC.27) for any ε∈ (0,1):

Pr
(
|ωaj(π0)−ωaj(π̄)|> ε

)
≤ 4mn(n+ 1)(1− δ1(1− δ2))n. (EC.33)

Combining (EC.27), (EC.28), (EC.29) and (EC.33) and applying the union bound yields

Pr

(
|Ia(π̄)|
n
|π̄aj −ωaj(π̄)|> ε

)
≤Pr

(
|π̄aj −π0

aj|> ε/3
)

+ Pr
(
|π0
aj −ωaj(π0)|> ε/3

)
+ Pr

(
|ωaj(π0)−ωaj(π̄)|> ε/3

)
≤ 2

(
exp(−n(ε/3)2) + (1− δ1(1− exp(−(ε/3)2)))n + 2mn(n+ 1)(1− δ1(1− δ2))n

)
. (EC.34)
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for any ε∈ (0,1) and each a∈A and j ∈ J . It follows that for any ε∈ (0,1),

Pr(Zn(π̄)> ε) = Pr

(∑
a∈A

∑
j∈J

|Ia(π̄)|
n
|π̄aj −ωaj(π̄)|> ε

)
(EC.35)

≤
∑
a∈A

∑
j∈J

Pr
(
|π̄aj −ωaj(π̄)|> ε

md

)
≤ 2md(exp(−n(ε/(3md))2) +

(
1− δ1(1− exp(−(ε/(3md))2))

)n
(EC.36)

+ 2mn(n+ 1)(1− δ1(1− δ2))n)). (EC.37)

where the first line follows by definition of Zn(π), the second line follows from applying the union

bound over all a ∈ A and j ∈ J and noting m = |A| and d = |J |, and the third line follows from

(EC.34). Note that the third term in (EC.37) is dominant, which implies Pr(Zn(π̄)> ε)≤O(n2κn),

where κ= 1− δ1(1− δ2). Lastly, note κ∈ (0,1) because δ1 ∈ (0,1) and δ2 ∈ (0,1). �

EC.5.3. Proofs of Proposition 2, Theorem 3, and Theorem 4

Proof of Proposition 2. The proof proceeds in two steps. First, we show Zn(π̃n)−→ 0. Second,

we prove the main result. Step 1. Note that for any π̄ attained at a feasible solution to PA-D(S),

0≤Zn(π̃n)≤Zn(π̄). Therefore, we prove the result by constructing a feasible solution (π̄, x̄, w̄, z̄, φ̄)

for each n≥ 0 and showing Zn(π̄)−→ 0. Because Zn(π0)−→ 0 by Lemma EC.3, it suffices to show

π̄ −→ π0. By Assumption 3, for each a ∈ A there exists s ∈ S such that Bs ⊆ Ra(π0). For each

n ≥ 0, let (π̄, x̄, w̄, z̄, φ̄) be constructed as follows: for each a ∈ A, set w̄as = 1 for s = s(a) and

w̄as = 0 for all s ∈ S \ s(a). Fix w = w̄ in PA-D and let (π̄, x̄, z̄, φ̄) be the solution of the resulting

subproblem. Then

Pr

(
sup
j∈J
|π̄aj −π0

aj|> ε
)
≤Pr

(
sup
j∈J
|(vs(a)j −π0

aj|> ε
)

≤Pr

sup
j∈J

∣∣∣ 1

|Is(a)|
∑
i∈Is(a)

yij −π0
aj

∣∣∣> ε


≤ 2exp(−ε2|Is(a)|),

where the first line follows from constraint (13i), the second line follows by definition of vs(a),

and the third line follows from Lemma EC.4. Because f(r) is continuous on R (Assumption

1), |Is(a)| −→ ∞ as n −→ ∞ for all a ∈ A. Therefore, π̄n −→ π0, as desired. Step 2. Note

0 ≤ Zn(π∗n) ≤ Zn(π̃n) by defintion of π∗n. Because Zn(π̃n) −→ 0 by Step 1, it follows that

Zn(π∗n)−→ 0. Therefore, |Zn(π∗n)−Zn(π̃n)| −→ 0, as desired. �

Proof of Theorem 3. Let w̃ be obtained at an optimal solution to PA-D, and define

Ṽ = {vs ∈ V |
∑

a∈A w̃as = 1}. Let S̃ index the candidate distributions in Ṽ . Let V +
T denote the
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candidate distributions at termination of Algorithm 2, with index set S+
T . For conciseness, we

suppress dependence of Ṽ , V +
T , S̃ and S+

T on n. The proof proceeds in two steps. First, we show

|Zn(π̃n) − Zn(π+
n )| −→ 0. Second, we prove the main result. Step 1. Observe that if Ṽ ⊆ V +

T ,

then Zn(π+
n ) ≤ Zn(π̃n). By optimality of π̃n with respect to PA-D(S), Zn(π̃n) ≤ Zn(π+

n ). Thus

|Zn(π̃n) − Zn(π+
n )| −→ 0 if Ṽ ⊆ V +

T . It therefore suffices to show that for any vs ∈ Ṽ , there

exists vs′ ∈ V +
T such that |vs − vs′ | −→ 0. Suppose otherwise. Then for all n ≥ 0, there exists

vs ∈ Ṽ such that vs 6= vs′ for all vs′ ∈ V +
T . By the weak law of large numbers, for each s ∈ S

there exists νs ∈ Rd such that vs −→ νs as ns −→∞. It follows that for all n ≥ 0, there exists

s ∈ S̃ such that νs 6= νs
′ for all s′ ∈ S+

T . Note vsj = ψsj/(
∑

j∈J ψsj). Then for all n ≥ 0, there

exists s ∈ S̃ such that Hα(ψs,ψs′) < 0 and νs 6= νs
′ for all s′ ∈ S+

T . Next, it is straightforward

to verify that because the density function f(r) is continuous on R (Assumption 1), ns −→∞

and ns′ −→∞ as n−→∞. Hence, Pr(Hα(ψs,ψs′)≥ 0|νs 6= νs′)−→ 1, a contradiction. Therefore,

|Zn(π̃n)−Zn(π+
n )| −→ 0. Step 2. By Step 1 of the proof of Proposition 2, we have Zn(π̃n)−→ 0.

Because |Zn(π̃n)− Zn(π+
n )| −→ 0 from the first step of this proof, it follows that Zn(π+

n ) −→ 0.

Following a parallel argument to the proof of Proposition 1, it can be shown that Zn(π+
n ) −→ 0

implies |Ln(π+
n )−Ln(π̂n)| −→ 0. Because |Ln(π̂n)−Ln(π0)| −→ 0 from the first step of the proof

of Theorem 1, |Ln(π+
n ) − Ln(π̂n)| −→ 0 implies |Ln(π+

n ) − Ln(π0)| −→ 0. The remainder of the

proof follows by a parallel argument to the second step of the proof of Theorem 1, with π+
n in

place of π̂n. �

Proof of Theorem 4. The proof proceeds in two steps. First, we show Pr(T >m)≤ αmS. Second,

we prove the main result. Step 1. By assumption, for each s ∈ S, there exists a ∈ A such that

Bs ⊆Ra(π0). In words, this means that for each ball Bs, every contract r ∈Bs induces the same

action from the agent. Accordingly, each candidate distribution s ∈ S is mapped to exactly one

action a∈A. If there exists an s∈ S+ such that s is mapped to an action a, we say that the action

a is represented in S+. For each s ∈ S−, let Es be the event that there exists s′(s) ∈ S+ such that

Bs ⊆Ra(π0) and Bs′ ⊆Ra(π0); that is, Es is the event that the action a that s ∈ S− maps to is

already represented in S+. Next, pick an iteration t, and let s∗t be the cluster selected in the tth

iteration of Algorithm 2. Then Es∗t is the event that the candidate distribution selected in iteration

t is mapped to an action that is already represented in S+. We can now write

Pr(Es∗t )≤Pr(∪s∈S− {∩s′∈S+{Hα(ψs,ψs′)≥ 0},Es})

≤
∑
s∈S−

Pr(∩s′∈S+{Hα(ψs,ψs′)≥ 0},Es)

≤
∑
s∈S−

Pr
(
∩s′∈S+{Hα(ψs,ψs′)≥ 0}

∣∣∣Es)Pr(Es)



e-companion to Kaynar and Siddiq: Estimation of a Non-Parametric Principal-Agent Model ec35

≤
∑
s∈S−

Pr
(
∩s′∈S+{Hα(ψs,ψs′)≥ 0}

∣∣∣Es) , (EC.38)

The first inequality follows by definition of sτ (Algorithm 2) and Es. The second inequality fol-

lows from the union bound, the third inequality follows from conditioning on Es, and the fourth

inequality follows because Pr(Es)≤ 1 for all s∈ S. Next, for each s∈ S, we have

Pr
(
∩s′∈S+ {Hα(ψs,ψs′)≥ 0}

∣∣∣Es)≤Pr
(
Hα(ψs,ψs′(s))≥ 0

∣∣∣Es) (EC.39)

≤Pr
(
Hα(ψs,ψs′(s))≥ 0

∣∣∣νs = νs′(s)

)
(EC.40)

≤ α, (EC.41)

where the first inequality follows from dropping the events {Hα(ψs,ψs′)≥ 0} from the intersection

for all elements in S+ \ s′(s), the second inequality follows because the event νs = νs′(s) implies the

event Es, and the third inequality follows by definition of Hα(ψs,ψs′). By combining (EC.38) and

(EC.39) and noting |S−| ≤ |S| for all t= 1, . . . , T , it follows that Pr(Es∗t )≤ α|S|. Next, note that

the event {T >m} implies {∪m−1
t=0 Es∗t } by the pigeonhole principle. Therefore, by the union bound,

Pr(T >m)≤Pr
(
∪m−1
k=0 Es∗t

)
≤

m−1∑
k=0

Pr(Es∗t )

≤
m−1∑
k=0

α|S|

≤ αm|S|,

as desired. Step 2. Note E[T ] =
∑∞

k=0 Pr(T > k) by definition of the expectation. It follows that

∞∑
k=0

Pr(T > k) =

|S|−1∑
k=0

Pr(T > k)

=
m−1∑
k=0

Pr(T > k) +

|S|−1∑
k=m

Pr(T > k)

≤m+

|S|−1∑
k=m

Pr(T > k),

where the first equality follows because T is bounded above by |S|, the second equality follows

from separating the summation, and the inequality follows because
∑m−1

k=0 Pr(T > k) ≤m. Next,

note that the event T > k implies T >m for k =m, . . . , |S| − 1, and thus Pr(T > k)≤ Pr(T >m)

for k=m, . . . , |S| − 1. Therefore,

m+

|S|−1∑
k=m

Pr(T > k)≤m+

|S|−1∑
k=m

Pr(T >m) =m+ Pr(T >m)(|S| −m)≤m[1 +α · |S| · (|S| −m)],

where the final inequality follows because Pr(T >m)≤ αm|S| as established in Step 1. �
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EC.5.4. Proofs for Sections EC.3 and EC.4

Proof of Corollary EC.1. The proof proceeds similarly to the proof of Theorem 1: First, we show

|
∑

k∈K (Lkn(π̂n)−Lkn(π0)) | −→ 0. Second, we show plimn→∞π̂n = π0 if and only if Assumption

EC.2 holds. Step 1. By Lemma EC.2, Lkn(π) is lower semicontinuous for all k ∈K. Because the sum

of lower semicontinuous functions is lower semicontinuous (Dietze and Schäuble 1985), it follows

that
∑

k∈K L
k
n(π) is lower semicontinuous. Next, we show |

∑
k∈K (Lkn(π̂n)−Lkn(π0)) | −→ 0. By the

triangle inequality, ∣∣∣∣∣∑
k∈K

(
Lkn(π̂n)−Lkn(π0)

)∣∣∣∣∣≤∑
k∈K

|Lkn(π̂n)−Lkn(π0)|.

By the proof of Theorem 1 and Assumption EC.1, we have |Lkn(π̂n) − Lkn(π0)| −→ 0. Because

Lkn(π) ≥ 0 for any π, it follows that |
∑

k∈K (Lkn(π̂n)−Lkn(π0)) | −→ 0. Step 2. For each k ∈ K,

define Lk(π) =
∑

a∈A
∑

j∈J |πkaj − limn→∞ω
k
aj(π)|. Because

∑
k∈K L

k
n(π) is lower semicontinuous,

|
∑

k∈K L
k
n(π̂n)−

∑
k∈K L

k
n(π0)| −→ 0, and Π is compact, by Theorem 5.14 of Van der Vaart (2000),

plimn→∞π̂n ∈ argmin
π∈Π

∑
k∈K

Lk(π).

Next, by parallel argument to Lemma EC.3, it can be shown that π0 is the unique minimizer of∑
k∈K L

k(π) if and only if Assumption EC.2 holds. Suppose Assumption EC.2 holds. It follows

that Lk(π0) = 0 and Lk(π) > 0 for π 6= π0. Therefore, argmin
π∈Π

∑
k∈K L

k
n(π) = π0, which implies

plimn→∞π̂n = π0. Conversely, if Assumption EC.2 does not hold, then there exists π̃ 6= π0 such

that
∑

k∈K L(π̃) =
∑

k∈K L(π0) = 0, which implies plimn→∞π̂n 6=π0. �

Proof of Proposition EC.1. For convenience, let Zt(wt,εt) be the objective function value of

PA-T under (wt,εt), and let (w̄t, ε̄t) be the optimal solution to PA-T in iteration t of Algorithm

5. Let “−→” denote convergence in probability as T −→∞. The proof proceeds in four steps. We

prove useful supporting results in the first three steps: In Step 1 we show vTs −→ π0
a(rs) for each

s∈ S; in Step 2 we show ZT (w̄T , ε̄T )−→ 0; in Step 3 we show Pr(w̄Tas = 1)−→ 1 for a= a(rs) and

Pr(w̄Tas = 0) −→ 1 for a 6= a(rs), where a(rs) is the agent’s true optimal action under rs and π0.

In Step 4, we combine these results to prove the statement of Proposition EC.1. Step 1. Because

εt > 0 for each t ≥ 1, by Algorithm 5 we have nTs −→∞ as T −→∞. It follows by construction

of vts in Algorithm 5 and by Lemma EC.4 that vTs −→ π0
a(rs). Step 2. For each t≥ 1, construct a

solution w̃ as follows: for each s∈ S, set w̃as = 1 for a= a(rs) and w̃as = 0 for a 6= a(rs). Note that

w̃ satisfies constraints (EC.13c)-(EC.13e) for all t≥ 1. Next, fix w̃ as a parameter in PA-T. Then

for each t, PA-T simplifies to the following subproblem:
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minimize
ε

∑
s∈S

|εs| (EC.42a)

subject to

(∑
j∈J

vtsjr
s
j − ca(rs)

)
+ εs ≥

(∑
j∈J

vts′jr
s
j − ca(rs

′
)

)
, s∈ S, s′ ∈ S, (EC.42b)

εs ≥ 0, s∈ S. (EC.42c)

Let ε̃t be the optimal solution to the above subproblem in round t. It follows from constraint

(EC.42b) and (EC.42c) that for each s∈ S,

ε̃ts = max
s′∈S

{(∑
j∈J

vts′jr
s
j − ca(rs

′
)

)
−

(∑
j∈J

vtsjr
s
j − ca(rs)

)
,0

}
. (EC.43)

Note that
∑

j∈J π
t

a(rs
′
),j
rsj − ca(rs

′
) ≤

∑
j∈J π

t
a(rs),jr

s
j − ca(rs) for all k ∈ S and t ≥ 1, by optimality

of a(rs) with respect to contract rs. Because vTs −→ π0
a(rs) for each s ∈ S by Step 1, it follows

from (EC.43) that ε̄Ts −→ 0 for each s ∈ S. Therefore, ZT (w̃, ε̃T )−→ 0. By optimality of (w̄t, ε̄t)

with respect to PA-T, we have Zt(w̄t, ε̄t) ≤ Zt(w̃, ε̃t) for all t ≥ 1. Therefore, ZT (w̄t, ε̄t) −→ 0.

Step 3. For each s ∈ S and t ≥ 1, let āt(rs) be the action for which w̄t
as = 1. Suppose by way of

contradiction that Pr(āT (rs) = a(rs))−→ 1 does not hold for each s∈ S. Then there exists s̃∈ S and

a subsequence tb, b= 1,2, . . . such that ātb(rs̃) 6= a(rs̃) for all b≥ 1. Next, by constraint (EC.13b),

we have

ε
tb
s̃ ≥max

s′∈S

{∑
j∈J

(vts′j − vtsj)rs̃j + cā(rs̃)− cā(rs
′
),0

}

≥max
s′∈S

{∑
j∈J

(vts′j − vtsj)rs̃j + c− c̄,0

}

for all b≥ 1, where the second inequality follows by definition of c and c̄. Because v
tb
s′ −→ π0

a(rs
′
)

as b −→ ∞ for all s′ ∈ S by Step 1, and by Assumption EC.3 there exists s′ ∈ S such that∑
j∈J(π0

a(rs
′
),j
−π0

a(rs̃),j
)rs̃j + c− c̄ > 0, it follows that limb→∞ ε

tb
s̃ > 0. Hence limb→∞Z

tb(w̄tb , ε̄tb)> 0,

which implies limT→∞Z
T (w̄t, ε̄t) > 0. However, by Step 2, ZT (w̄t, ε̄t) −→ 0, which yields a con-

tradiction. Therefore, Pr(āT (rs) = a(rs)) −→ 1 for all s ∈ S. By definition of āt(rs), this implies

Pr(w̄Tas = 1)−→ 1 for a= a(rs) and Pr(w̄Tas = 0)−→ 1 for a 6= a(rs), as desired. Step 4. We now show

π̂T −→π0. For convenience, let Sa = {s|a(rs) = a}. Then by construction of π̂t from Algorithm 5,

π̂taj =

∑
s∈S v

t
sjn

t
sw̄

t
as∑

s∈S n
t
sw̄

t
as

=

∑
s∈Sa v

t
sjn

t
sw̄

t
as +

∑
s∈S\Sa v

t
sjn

t
sw̄

t
as∑

s∈Sa n
t
sw̄

t
as +

∑
s∈S\Sa n

t
sw̄

t
as

,
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for all (a, j). By Step 3, Pr(w̄Tas = 1)−→ 1 for s∈ Sa and Pr(w̄Tas = 0)−→ 1 for s∈ S \Sa. Further,

by Step 1, vTs −→ π0
a(rs). It follows that for each j ∈ J , vTsjw̄

T
as −→ π0

aj for s ∈ Sa, and vTsjw̄
T
as −→ 0

for s∈ S \Sa. Therefore,

plim
T→∞

π̂Taj = plim
T→∞

∑
s∈Sa v

T
sjn

T
s w̄

T
as +

∑
s∈S\Sa v

T
sjn

T
s w̄

T
as∑

s∈Sa n
T
s w̄

T
as +

∑
s∈S\Sa n

T
s w̄

T
as

= plim
T→∞

π0
aj

∑
s∈Sa n

T
s∑

s∈Sa n
T
s

= π0
aj.

for all (a, j). Because π̂Taj −→ π0
aj for all (a, j), it follows that π̂T −→π0. �

Proof of Corollary EC.2. It suffices to show |U(r̂T )−U(r∗)| −→ 0. The proof proceeds in two

steps. First, we show Û(r)−→U(r) for any r∈R. Second, we prove the main result. Step 1. Note

|U(r̂)−U(r∗)|= |U(r̂)− Û(r̂) + Û(r̂)− Û(r∗) + Û(r∗)−U(r∗)|

≤ |U(r̂)− Û(r̂)|+ |Û(r̂)− Û(r∗)|+ |Û(r∗)−U(r∗)|

where the equality follows from adding and subtracting Û(r̂) and Û(r∗), and the inequality

follows from the triangle inequality. Next, note that by the definitions of Û(r) (given above)

and U(r) (given in (EC.11)), π̂T −→ π0 implies Û(r)−→ U(r) for any r ∈R. Step 2. By Step 1,

|U(r̂T )− Û(r̂T )| −→ 0 and |Û(r∗)− U(r∗)| −→ 0. It remains to show that |Û(r̂T )− Û(r∗)| −→ 0.

Suppose not. Then there exists a subsequence tb, b≥ 1 such that |Û(r̂tb)− Û(r∗)|> 0 for all b≥ 1.

Further, because for all t ≥ 1, r̂t ∈ argmaxr∈RÛ(r) by definition, we have Û(r̂tb) > Û(r∗) for all

b ≥ 1. Letting b −→∞ and noting Û(r) −→ U(r) for all r ∈ R yields plimb→∞Û(r̂tb) > U(r∗). It

is straightforward to obtain a contradiction to the preceding inequality using Û(r)−→ U(r) from

Step 1, and r∗ = argmaxr∈RU(r) by definition of r∗. �


